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Climate change presents multiple stressors that are impacting marine life. As carbon dioxide 

emissions continue to increase in the atmosphere, atmospheric and sea water temperatures increase. In 

addition, more carbon dioxide is absorbed into the oceans, reducing pH and aragonite saturation state, 

resulting in ocean acidification (OA). Tightly coupled with OA is hypoxia due to deep stratified sea 

water becoming increasingly acidified and deoxygenated. The effects of these climate stressors have 

been studied in detail for only a few marine animal models. However, there are still many taxa and 

developmental stages in which we know very little about the impacts. Using genomic techniques, we 

examine the adaptive potential of three local marine invertebrates under three different climate 

stressors: marine disease exacerbated by thermal stress, OA, and combined stressors OA with hypoxia 

(OAH). As sea water temperatures rise, the prevalence of marine diseases increases, as seen in the sea 

star wasting syndrome (SSWS). The causation of SSWS is still widely debated; however reduced 

susceptibility to SSWS could aid in understanding disease progression. By examining genetic variation 

in Pisaster ochraceous collected during the SSWS outbreak, we observed weak separation between 

symptomatic and asymptomatic individuals. OA has been widely studied in many marine organisms, 

including Crassostrea gigas. However, limited studies have parsed the effects of OA during 

settlement, with no studies assessing the functionality of settlement and how it is impacted by OA. We 

investigated the effects of OA on settlement and gene expression during the transition from larval to 

juvenile stages in Pacific oysters. While OA and hypoxia are common climate stressors examined, the 

combined effects have scarcely examined. Further, the impacts of OAH have been narrowly focused 

on a select few species, with many economically important organisms having no baseline information 

on how they will persist as OAH severity increases. To address these gaps in our knowledge, we 

measured genetic variation in metabolic rates during OA for the species Haliotis rufescens to assess 

their adaptive potential through heritability measurements. We discuss caveats and considerations 

when utilizing similar heritability estimate methods for other understudied organisms. Together, these 

studies will provide novel information on the biological responses and susceptibility of difference 

coastal species to stressors associated with global climate change. These experiments provide 

information on both the vulnerability of current populations and their genetic potential for adaptation 

to changing ocean conditions.   
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CHAPTER 1 – General introduction 

 
Background on climate change 

Global climate change has negatively impacted marine life in many ways. As carbon and 

other greenhouse gas emissions continue to increase in our atmosphere, our oceans are experiencing 

rising seawater temperatures, sea level rise, salination, ocean acidification (OA), and hypoxia (IPCC et 

al. 2021). Locally, the acidification of California Current Large Marine Ecosystem (CCLME) often 

coincides with hypoxic conditions due to seasonal upwelling (Chan et al. 2008). OA and hypoxia 

(OAH) along with rising sea water temperatures are among the greatest threat to the Pacific ocean’s 

eastern boundary (Harley et al. 2006; McClatchie et al. 2010). Since the industrial revolution, global 

sea surface temperatures have increased 0.88°C (IPCC et al. 2021). Oxygen concentrations in the 

eastern temperate Pacific have declined 10 to 20 % over the last three decades (Bograd et al. 2008). 

Ocean temperatures are predicted to rise 1.76C to 5.28C by 2100 (IPCC et al. 2021). While ocean 

waters are warming, the pH of our oceans has already dropped 0.1 units since the industrial era, 

meaning acidity is approximately 30% higher (Caldeira and Wickett 2003; Doney et al. 2009; IPCC et 

al. 2021). Projections of continued carbon emissions predict a decrease of 0.06 to 0.31 pH units by 

2100. Concentrations of oxygen in our oceans are declining due to heat-related stratification, reduced 

oxygen solubility as temperatures increase, and biological processes that produce or consume oxygen 

(Deutsch et al. 2015, IPCC 2014), resulting in hypoxia (Hoegh-Guldberg et al. 2018). 

Increasing sea water temperatures, ocean acidification, and hypoxia pose a major threat to 

marine ecosystems. Thermal stress has shown to have physiological impacts on marine organisms 

(Hofmann and Somero 1995; Stillman and Somero 1996). Heat stress can damage molecular structure 

(Pörtner 2010), induce thermal hypoxemia, transitions to anaerobic energy production, and oxidative 

stress (Lannig et al. 2010; Sommer et al. 1997). These types of mechanisms may result in marine 

organisms being more prone to marine diseases as there are thermally stressed. Increased seawater 

temperatures has resulted in increased susceptibility to diseases in hosts (Harvell et al. 2002). In 

addition, warmer waters increase pathogen development, rates, transmission, and number of 

generations per year. As a result, we have seen a higher prevalence of marine diseases over the last few 

decades (Harvell et al. 2002, 2004).  

 

Ocean Acidification and Hypoxia 

 Ocean acidification, the result of increased acidified conditions due to increased 

concentrations of carbon dioxide, has negative impacts on calcifying marine organisms. Absorption of 

atmospheric CO2 into the ocean elevates CO2 partial pressure (pCO2), resulting in shifts in carbonate 

chemistry. Dissolved CO2 in seawater results in the formation of carbonic acid (Caldeira and Wickett 

2003; Feely et al. 2009; Orr et al. 2005). Carbonic acid then dissociates, which results in a decrease in 
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carbonate (CO2-3) ions and an increase in bicarbonate (HCO-3) and hydrogen (H+) ion concentrations 

(Eq. 1).  

 

  "#!(#) ⇔ "#!(%&) +&!# ⇔ &!"#' ⇔ &"#'( +	&) ⇔ "#'!( + 2&)            [Eq. 1] 

 

Accumulation of H+ ions result in pH reduction (pH = -log[H+]), along with shifts in carbonate 

chemistry. Hydrogen ions have a high affinity towards carbonate, leading to a shift towards the left of 

Equation 1, which in turn leads to an increase in bicarbonate and a decrease in carbonate ions (Feely et 

al. 2004; Zeebe and Wolf-Gladrow 2001). The shift in carbonate chemistry results in a decrease in 

saturation state (Ω) (Feely et al. 2009; Orr et al. 2005). Aragonite saturation state (Ωarag) is calculated as 

follows is the product of dissolved calcium and carbonate ions, divided by apparent solubility product 

(Ksp) (Eq. 2).  

 

Ω%*%# = +,%!"-+,.#!$-
/%&

             [Eq. 2] 

 

When saturation state is 1 seawater is in equilibrium (Ω arag = 1.0). Decreasing saturation state below 1 

(Ω arag < 1.0), seawater is thermodynamically unfavorable for organisms to build their calcium 

carbonate shells (CaCO3) (Fabry et al. 2008; Feely et al. 2004; Hofmann et al. 2010; Orr et al. 2005). 

The California Current Large Marine Ecosystem (CCLME) spans from Vancouver Island, 

Canada, to Punta Eugenia, Mexico. CCLME experiences seasonal upwelling during the summer (Feely 

et al. 2008). These upwelling waters contain dissolved inorganic carbon (DIC) (>2190 !mol kg, pH = 

7.75), and low calcium carbonate saturation (Ω arag < 1.0) (Chan et al. 2008; Harris et al. 2013; Somero 

et al. 2016). Aragonite saturation state from upwelled waters has seen decreases in value (Ω  = 0.66) 

(N. Gruber et al. 2012).  

 Within the CCLME, upwelled water brings nutrient-rich water to the surface (Snyder et al. 

2003). Increased productivity due to the influx of nutrients results in higher rates of remineralization of 

organic carbon into DIC (Feely et al. 2016). As organic matter breaks down, oxygen levels decrease, 

creating hypoxic zones (Chan et al. 2008). For this reason, OA is intrinsically linked to hypoxia, as 

DIC is coupled with pH and saturation state (Waldbusser et al. 2015). The coupling of OA and 

deoxygenation may potentially accelerate acidified condition progression on the Pacific’s eastern 

boundary (Chan et al. 2008). Models predict that coastal upwelling from the CCLME is predicted to 

reach undersaturated aragonite levels by 2050. Exposure to these OAH conditions make a corrosive 

and metabolically stressful environment for calcifying organisms (Gruber et al. 2012).  

 

Impacts of Ocean Acidification and Hypoxia 

Seawater with an elevated partial pressure of CO2 (pCO2) impairs calcification, growth, 

reproduction, and survival in many marine animals, and these effects vary widely among species 
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(Kroeker et al. 2010). Increased pCO2 leads to an increase in carbonic acid (H2CO3) forming hydrogen 

ions (H+) and bicarbonate ions (HCO3-), reducing the pH and saturation state of calcium carbonate 

(CaCO3) (Broecker and Clark 2001; Caldeira and Wickett 2003; Doney et al. 2009; Orr et al. 2005). 

(Broecker and Clark 2001; Caldeira and Wickett 2003; Doney et al. 2009; Orr, Fabry, Aumont, Bopp, 

Doney, Feely, Gnanadesikan, Gruber, Ishida, Key, et al. 2005). Lower saturation states directly affect 

the calcium carbonate secretion of calcifying organisms, reducing calcification rates and increasing the 

metabolic costs of calcification (Pan et al. 2015). 

Calcification, the process of crystallization of carbonate minerals from solution, is 

energetically favorable when seawater is over saturated. Shifts in saturation states has been shown to 

affect calcium carbonate secretion in calcifying organisms (Pan et al. 2015), resulting in reduced shell 

formation and shell dissolution (Doney et al. 2009, Orr et al. 2005). Calcification in more favorable in 

calcifying organism when sea water is over saturated (Ω > 1.0) (Feely et al. 2004a, Orr et al. 2005, 

Fabry et al. 2008, Waldbusser et al. 2015a). Reduced pH and saturation states is especially concerning 

for organisms found along the Oregon coast as they are also subjected to periodic upwelling. Many 

marine invertebrates rely on gas exchange from their membranes with the sea water. With increasing 

acidity, marine organisms need to make adjustments to counteract ion concentrations in the sea water 

through inner acid-base balance (Fabry et al. 2008). Such adjustments can be energetically expensive 

and may result in reallocation of cellular processes (Burnett 1997; Pörtner 2008).   

There is a growing interest in the effects of OA on early developmental stages. In most marine 

organisms, early life stages are more vulnerable to OA (Kroeker et al. 2010). Early in development, 

larvae are more sensitive to environmental conditions (Pechenik 1987), resulting in much higher rates 

of mortality overall (Gosselin and Qian 1997). It is during these early stages that calcifying organisms 

first deposit their calcium carbonate shells and skeleton, which is energetically demanding (Kurihara 

2008). In particular, metamorphosis is a stage in development where rapid calcification is required 

(Plough 2018). Studies have demonstrated that OA treatments impair metamorphic transition and 

reduce settlement success (Kurihara 2008). However, the mechanisms in which metamorphosis is 

impacted by OA conditions have yet to be explored. In chapter 3, I examine the impacts of OA on the 

Pacific oyster, Crassostrea gigas, during metamorphosis. I identify genes related to settlement that are 

differentially expressed between ambient have high pCO2 treatments.  

Hypoxic water has been shown to modify organism behavior, along with reducing growth, 

calcification, and gonad production (Low and Micheli 2020; Riedel et al. 2014), and in prolonged 

exposure mass mortality (Vaquer-Sunyer and Duarte 2008). Few studies have examined the synergistic 

effects of OAH on marine organisms (Pörtner 2005; Steckbauer et al. 2015). The blue mussel, Mytilus 

edulis, exhibited additive effects of low pH and hypoxia during short-term exposure (Gu et al. 2019). 

In 17 species of invertebrates along the Chilean coast, metabolic rates varied across taxa in a multi-

factorial OA and hypoxia study (Steckbauer et al. 2015). Overall, Steckbauer (et al. 2015) saw additive 

effects of hypoxia and high pCO2, but not consistent synergetic or antagonist effects. More studies are 
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needed to understand the impacts of OAH on calcifying organism as OA and hypoxia are not mutually 

exclusive (Chan et al. 2008). We examine the vulnerability and adaptive potential of the red abalone, 

Haliotis rufescens, by comparing four OAH treatments to estimate heritability of variation in metabolic 

rate for both species in chapter 4.  

 

Increasing Prevalence of Marine Diseases 

 Marine diseases have become more prevalent due to warmer waters (Harvell et al. 2002). 

Harvell et al. (2002) predicts that warmer waters provide a more hospitable environment for pathogens 

to flourish, in addition to hosts being more susceptible as their immune systems are weekend. The 

impacts of increased sea water temperatures resulting in a higher prevalence of marine disease was 

apparent when evaluating the spread and occurrence of Sea Star Wasting Syndrome (SSWS). The 

SSWS epidemic began in 2013, and rapidly spread along the western coast of the United States, 

ranging from Baja California, Mexico, to the Gulf of Alaska, USA (Hewson et al. 2014, 2018). Sea 

stars that were impacted by SSWS had higher rates of symptoms in regions with higher sea water 

temperatures (Bates et al. 2009; Eckert et al. 1999; Eisenlord et al. 2016; Kohl et al. 2016). The spread 

and severity of SSWS was exacerbated by rising sea water temperatures, which are only going to 

worsen as global climate change progresses. Over 20 species of sea stars were impacted, including that 

of the keystone species, Pisaster ochraceus. 

 

Purpose of Chapter 2 

 Chapter 2 is entitled, “Little evidence for genetic variation associated with susceptibility to 

sea star wasting syndrome in the keystone species Pisaster ochraceus”. In this chapter, I investigate 

genomic differences between wasting and apparently normal P. ochraceus". Using restriction site-

associated DNA sequencing (2bRAD-seq), I examine genetic variation in ~72,000 SNP loci. No 

genetic differences were found when analyzing differentiation (Fst) between wasting and apparently 

normal individuals. I also found weak separation between the two disease-status groups through a 

discriminant analysis of principal components (DAPC). This study suggests that there is little genetic 

basis for reduced susceptibility to SSWS. However, from the gene regions we identified from the 

DAPC analyses, future studies can aid in functional studies intending to understand disease 

progression.  

 

Purpose of Chapter 3 

Chapter 3 is entitled, “Assessing how ocean acidification impacts gene expression patterns 

during settlement of Crassostrea gigas”. The purpose of this chapter is to identify genes important for 

settlement in the Pacific oyster, Crassostrea gigas, and how they are impacted by ocean acidification. 

Using transcriptomics, we were able to isolate 943 differentially expressed genes between ambient and 

high pCO2 treatments when accounting for differences in developmental stages. An enrichment test 
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was run on these 943 genes, where we found 31 GO terms within the three classes: molecular function, 

biological processes, and cellular components. The enriched genes found in this study add to a growing 

body of literature of genes important for C. gigas’ development and how OA impacts settlement.  

 

Purpose of Chapter 4 

 Chapter 4 is entitled: “Limitations of estimating heritability of variation in respiration rates 

within a small sample size of Haliotis rufescens”. For this chapter, we estimated heritability (h2) in 

respiration rates as a proxy for metabolic activity in Haliotis rufescens when exposed and recovering 

from four different ocean acidification and hypoxia (OAH) conditions. Estimates of h2 for respiration 

rates ranged from negative values to 0.25, indicating that traits for respiration rates are heritable. 

During OAH exposure, h2 increased with increasing OAH stress conditions, but dropped in the most 

extreme OAH treatment. However, constraints in the data set leave us to believe that these h2 estimates 

may not accurately reflect the species. In this chapter, we discuss the limitations in estimating 

heritability within a species lacking a complete genome along with issues that a rise from a small 

dataset consisting of individuals sampled from aquaculture settings.  
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Abstract 

The keystone species Pisaster ochraceus suffered mass mortalities along the northeast Pacific 

Ocean from Sea Star Wasting Syndrome (SSWS) outbreaks in 2013–2016. SSWS causation remains of 

debate, leading to concerns as to whether outbreaks will continue to impact this species. Considering 

the apparent link between ocean temperature and SSWS, the future of this species and intertidal 

communities remains uncertain. Surveys of co-occurring apparently normal and wasting P. ochraceus 

along the central Oregon coast in 2016 allowed us to address whether variation in disease status 

showed genetic variation that may be associated with differences in susceptibility to SSWS. We 

performed restriction site-associated DNA sequencing (2bRAD-seq) to genotype ~72,000 single 

nucleotide polymorphism (SNP) loci across apparently normal and wasting sea stars. Locus-specific 

analyses of differentiation (Fst) between disease-status groups revealed no signal of genetic differences 

separating the two groups. Using a multivariate approach, we observed weak separation between the 

groups, but identified 18 SNP loci showing highest discriminatory power between the groups and 

scanned the genome annotation for linked genes. A total of 34 protein-coding genes were found to be 

located within 15 kb (measured by linkage disequilibrium decay) of at least one of the 18 SNPs, and 30 

of these genes had homologies to annotated protein databases. Our results suggest that the likelihood of 

developing SSWS symptoms does not have a strong genetic basis. The few genomic regions 

highlighted had only modest levels of differentiation, but the genes associated with these regions may 

form the basis for functional studies aiming to understand disease progression. 

 

Introduction 

Rising sea water temperatures, due to climate change, are becoming increasingly stressful to 

marine ecosystems. As a result, marine diseases have become more prevalent in the last few decades 

(Harvell et al. 2002, 2004). Disease outbreaks can have detrimental downstream effects on marine 

species due to changes in community structure and age distribution (Behringer, Silliman, and Lafferty 

2018; Burge et al. 2014). Many marine taxa have suffered intense population declines as a result of the 

increasing prevalence of diseases (Burge et al. 2014; Harvell et al. 2004). These declines can result in 

reduced variation due to population bottlenecks and genetic drift, and possibly from strong directional 

selection associated with tolerance or resistance to disease (Nei, Maruyama, and Chakrabort 1975; 

Zenger, Richardson, and Vachot-Griffin 2003).  

The Sea Star Wasting Syndrome (SSWS) epidemic event that began in 2013 is believed to be 

the largest marine wildlife disease on record (Gravem et al. 2021; Harvell et al. 2019). SSWS affected 

over 20 species of sea stars from Baja California, Mexico, to the Gulf of Alaska, USA (Hewson et al. 

2014, 2018), and severely reduced population sizes of several sea star species (Gravem et al. 2021; 

Harvell et al. 2019; Hewson et al. 2014; Menge et al. 2016; Miner et al. 2018; Montecino-Latorre et al. 

2016). Similar SSWS symptoms have been observed in British Columbia in 2008 (Bates, Hilton, and 

Harley 2009), along the US east coast (Bucci et al. 2017), the South Pacific (Pratchett 1999; Zann, 
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Brodie, and Vuki 1990), Australia and Yellow Sea (Hewson et al. 2019). While the viral candidate sea 

star-associated densovirus (SSaDV) has been debunked (Jackson et al. 2020), other possible causative 

or exacerbating agents remain unknown, with hypotheses including pathogen(s) (Lloyd and Pespeni 

2018), inconsistent aetiology stress responses between locations, species and environment (Hewson et 

al. 2018), microbial dysbiosis (Lloyd and Pespeni 2018), and microbial-driven depletion of oxygen at 

the animal–water interface (Aquino et al. 2021). There is also mixed evidence for whether 

anomalously warm waters linked to global warming initiated the outbreak (Aalto et al. 2020; Eisenlord 

et al. 2016; Menge et al. 2016; Miner et al. 2018; Tracy, Weil, and Harvell 2020). Regardless, it is 

clear that the disease is exacerbated in warmer conditions (Bates, Hilton, and Harley 2009; Eckert, 

Engle, and Kushner 1999; Eisenlord et al. 2016; Kohl, McClure, and Miner 2016), and that severe 

population reductions occurred in warmer southern regions (Gravem et al. 2021; Harvell et al. 2019; 

Miner et al. 2018). The interplay between climate change and disease is a growing threat to wildlife 

species, especially when it causes rapid and extreme population declines. What is still unclear is 

whether tolerance or resistance to some of these diseases has a genetic basis that may allow 

populations to adapt if outbreaks continue to occur.  

The keystone species Pisaster ochraceus was severely affected by SSWS over much of its 

range. In Oregon, their populations declined by 50%–94% (Menge et al. 2016). Because P. ochraceus 

aids in maintaining fast-growing Mytilus californianus populations from overgrowing intertidal zones 

(Paine 1966, 1969, 1974), declines in their populations have resulted in trophic cascades and regime 

shifts in intertidal regions (Burt et al. 2018; Miner et al. 2018; Schultz, Cloutier, and Côté 2016). Loss 

of P. ochraceus due to SSWS could have detrimental impacts on coastal ecosystems. It is likely that 

SSWS has exerted strong selection on P. ochraceus populations. Recent genetic studies on this and 

other affected sea star species suggest a genetic component to variation in SSWS susceptibility. 

Individuals with SSWS symptoms showed elevated expression levels in genes associated with immune 

response and tissue remodeling (Fuess et al. 2015; Gudenkauf and Hewson 2015; Ruiz‐Ramos et al. 

2020). In addition, Schiebelhut et al. (2018) observed allele frequency shifts before and after peak 

SSWS outbreaks in California populations of P. ochraceus. More specifically, they detected changes in 

restriction site-associated DNA sequencing (RAD-seq) haplotype frequencies between pre-SSWS 

adults and post-SSWS adults, as well as between pre-SSWS adults and recruits in the populations after 

SSWS. These changes occurred in few loci but were consistent across independent geographical 

samples (Schiebelhut, Puritz, and Dawson 2018). However, because Schiebelhut et al. (2018) 

genotyped only apparently normal individuals (asymptomatic), it is still unclear whether the allele 

shifts were caused by the disease itself or by other co-occurring factors.  

Here, we build upon the work of Schiebelhut et al., (2018) by investigating genomic 

differences between wasting individuals (i.e., presenting with SSWS) and grossly, or apparently 

normal individuals from the same localities during an outbreak of SSWS. We examine genetic 

variation in 200 P. ochraceus individuals collected in central Oregon in 2016, 2 years following the 
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initial spring 2014 SSWS outbreak in Oregon (Menge et al. 2016). At this time, both apparently normal 

and wasting sea stars were common at each of the six Oregon sites sampled. We reasoned that, by 

being found on the same transects as wasting individuals and hence probably exposed to similar 

conditions, sea stars found to be apparently normal may carry genetic variants associated with 

resistance or tolerance to SSWS. By combining field surveys of natural disease prevalence with high-

throughput single nucleotide polymorphism (SNP) genotyping, we assess the contribution of sea star 

genetic variation to SSWS occurrence. Our data set is the result of a unique opportunity to compare 

apparently normal and wasting individuals from the same time and place during the SSWS epidemic.  

 

Methods & Materials 

Field surveys and tissue sampling 

Field surveys aimed at quantifying the prevalence of SSWS were conducted between April 

and July 2016 in the low intertidal zone at five sites in central Oregon: Fogarty Creek (44.8386, 

−124.0588), Boiler Bay (44.8303, −124.0608), Yachats Beach (44.3114, −124.1086), Strawberry Hill 

(44.2492, −124.1154) and Tokatee Klootchman (44.2037, –124.1170). These surveys were conducted 

using 5 × 2-m belt transects (5–10 transects per site). Animals were collected by hand at low tide. Arm 

length was recorded (center to longest arm) for each animal, and only adults (with >3 cm arm length) 

were scored for disease status (Menge et al., 2016). We recorded visual disease symptoms based on the 

six-level ranking protocol, as per Menge et al. (2016); these included, in order of severity: twisting 

arms (1), deflated (2), lesions (3), lost arms (4), losing grip on rocks (5), and disintegrating or 

“melting” (6). Animals were considered apparently normal (rank of 0) if none of these symptoms 

existed.  

We returned to each of these sites to collect tissue for genetic analysis (Table S2.1). We also 

collected tissue from apparently normal and wasting individuals at a sixth site (Smelt Sands, 44.3212, 

−124.1081, on August 16, 2016), but we did not conduct transect surveys there. From each individual, 

tube feet (~5–10) were collected using scrubbed and sterilized forceps, then stored in 1.5-ml 

microcentrifuge tubes containing 1 ml of 95% ethanol. All samples were stored on ice and then at –

20°C until ready for DNA isolation. In total, we collected tissue from 410 sea stars, 92 of which were 

wasting.  

 

Library preparation and sequencing 

For genotyping, we included only individuals with the highest wasting scores from each site, 

which ranged from ranks 3 to 6 (Table S2.1). In total, 82 individuals were included in the wasting 

group and 112 in the apparently normal group. DNA was extracted using the E.Z.N.A Tissue DNA kit 

(Omega Biotek) and quantified using a fluorescence method (Quant-iT dsDNA Assay Kit, 

ThermoFisher). We used the 2bRAD protocol for genotyping SNPs (Wang et al. 2012), following the 
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original published protocol, but using the enzyme AlfI. We also used adaptors with “NN” overhangs to 

target 100% of restriction sites. Multiplexed individuals were pooled at approximately equimolar 

amounts (after quantification via quantitative PCR [polymerase chain reaction]) and sequenced across 

five lanes of an Illumina HiSeq 3000 as 50-bp single reads, at the Center for Genome Research and 

Biocomputing at Oregon State University.  

 

Data filtering 

Adaptors were trimmed and low-quality reads were filtered (phred score <30) using publicly 

available scripts (https://github.com/EliMeyer/2brad_utilities/). Because of the cleavage pattern of the 

AlfI enzyme, 2bRAD DNA inserts are 34–36 bp in length. Therefore, after adaptor and quality 

trimming, we filtered out any reads that were shorter than 34 bp to reduce chances of mismapping. 

Cleaned reads were mapped to the reference Pisaster ochraceus genome (NCBI accession 

GCA_010994315.1) using shrimp (Rumble et al., 2009), reporting the top three maximum hits per 

read. We used stacks version 1.35 (Catchen et al. 2011, 2013) to call genotypes using default 

parameters, with samples coded by disease status group (wasting/apparently normal). Additional 

filtering parameters used included: selection of a single (first) SNP per stack, removal of loci that were 

genotyped in only one group, minimum minor allele frequency (MAF) set to 0.025, a minimum minor 

allele count set to 4, and only loci represented in at least 50% of samples were retained. Using vcftools 

(Danecek et al. 2011), we retained only biallelic loci and only genotypes with a minimum coverage of 

six reads. Finally, we used plink (Purcell et al. 2007) to remove individuals that were missing more 

than 50% of loci. This filtering pipeline retained a data set with 133 individuals (74 normal and 59 

wasting) and 71,784 SNP loci, which we will refer to as the “full data set.”  

 

Population structure 

Before comparing genotypic variation between sea stars varying in disease status, we assessed 

whether significant population genetic structure exists among the sampled sites. We used the Bayesian 

clustering approach in structure (Pritchard, Stephens, and Donnelly 2000) with the data set of 133 

individuals, but we further filtered it to reduce computational burden. For this, we filtered loci that 

were genotyped in at least 90% of individuals, using vcftools, retaining 4,626 loci. structure runs 

included 100,000 burn-in and 100,000 Markov chain Monte Carlo (MCMC) sampling replicates, 

assuming admixture and with sampling locality used as prior information. We ran three values of K to 

assess whether clustering occurring at the specific site (K = 6) or at the subregion level (K = 3) were 

more likely than a large panmictic population (K = 1). To confirm that parameters converged, each 

value of K was run three separate times and likelihoods and clustering patterns were compared across 

runs. This clustering analysis suggested genetic variation was not structured among sampling sites 
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(Figure S2.1). We therefore considered our samples as coming from a single population in the 

subsequent analyses.  

 

Analyses of genetic variation 

We used two types of approaches for estimating differentiation between disease status groups. 

We estimated Weir & Cockerham's Fst (Weir and Cockerham 1984) using gpat++ (Shapiro et al. 

2013), with significance levels adjusted using the false discovery rate (FDR) in r. To test for Fst 

outliers that may indicate selection, we used bayescan version 2.1 (Foll and Gaggiotti 2008) with the 

following settings: prior odds of the neutral model of 10, burn-in of 50,000 replicates, a thinning 

interval of 10, 20 pilot runs for 5,000 iterations, and recorded output of 5,000 iterations. Significance 

for Bayescan Fst outliers was assessed at a q-value FDR of 0.01.  

We also used a multivariate approach to test for differentiation between grossly normal and 

wasting sea stars. A discriminant analysis of principal components (DAPC) (Jombart, Devillard, and 

Balloux 2010) was used, implemented in the r package “adegenet” (Jombart and Collins 2015) and 

identified outlier loci based on their loadings associated with the discriminant function separating the 

two groups.  

 

Regions linked to discriminant loci 

To identify functional candidates that may be associated with disease status, we scanned for 

protein-coding genes linked to outlier SNPs. We first determined the appropriate genomic window size 

for scanning around each SNP by estimating linkage disequilibrium (LD) between pairs of SNPs. The 

r
2 was calculated using vcftools between pairs of SNPs within 100,000-bp windows. Average r

2 was 

calculated in bins of 100-bp increments and were plotted against physical distance. This plot showed 

that LD decays rapidly up to 15 kb, then continues to decrease but at lower rates (Figure S2.2). We 

hence scanned a 30-kb window centered at each outlier SNP (15 kb on either side) by overlaying the 

protein-coding genome annotation from Ruiz-Ramos et al. (2020) onto the genome assembly, using the 

Integrative Genomics Viewer (Robinson et al. 2011).  

 

Results 

Field observation 

A total of 3,670 Pisaster ochraceus were counted in belt transects across five sites, with the 

incidence of SSWS ranging from 5.2% to 10.0% (Table 2.1). In three of the sites (Boiler Bay, Yachats 

Beach, and Strawberry Hill), all surveyed wasting sea stars showed either symptoms of lesions or arm 

loss, while at Tokatee Klootchman, 25% showed the more advanced symptom of grip loss. Fogarty 

Creek harbored sea stars with the most advanced stage of SSWS; all wasting individuals surveyed were 
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disintegrating (Table 2.1). Metadata associated with the 410 individuals from which we collected tissue 

sample can be found in Table S2.1.  

 

Sequencing and genotyping 

Illumina sequencing yielded ~1.6 billion reads. After removing low quality reads, 1.4 billion 

reads remained, with an average of 6.9 million reads per sample. A total of 259,407 RAD stacks passed 

sample and population filters, surveying a total of 9,526,221 bases (~2.3% of the 401.9-Mb genome) 

and with mean per-sample coverage of 38.1×. As mentioned above, 71,784 RAD stacks contained at 

least one polymorphic site, and a single random SNP was retained per stack in the full data set (Table 

S2.2). Moreover, given our estimated LD block of 15 kb, this full SNP set allowed for an average of 

2.5 SNPs sampled per block. This level of coverage suggests our data set may provide sufficient power 

to detect genomic regions associated with phenotypic differences, if these exist and have a strong 

genetic component (Lowry et al. 2017b, 2017a).  

 

Analyses of genomic variation 

Genomic differentiation between grossly normal and wasting sea stars was very low based on 

Fst estimates. Across the final SNP data set (71,784), Weir & Cockerham's Fst had a median value of 

0.00314, and nearly 45% of loci had Fst = 0 (Table S2.2). Moreover, while 362 loci had moderate Fst 

values (≥0.1), no locus showed significant differentiation after FDR adjustments; the lowest adjusted 

p-value was 0.172 (Figure 2.1). Outlier tests with Fst using bayescan also showed no evidence of 

selection in any locus in our data set (Figure S2.3).  

DAPC analyses showed modest separation between apparently normal and wasting groups 

(Figure 2.2a). Based on loading values from the DAPC, we identified 18 SNPs across 10 chromosomes 

contributing most to the differentiation between the two groups (Figure 2.2b; Table S2.3). Allele 

frequency differences across these loci ranged from 0.014 to 0.253 (Table S2.3). Using a 30-kb 

window centered at each of these SNP positions, we detected 34 protein-coding genes predicted by the 

genome annotation from Ruiz-Ramos et al. (2020). blast searches of these protein sequences against 

the Uniprot/Swissprot databased revealed that 30 of them have predicted products with known 

functional annotation (Table S2.4). Chromosomes 3 and 8 harbored the most genes linked to these 

SNPs (seven genes each); in chromosome 8, one SNP was linked to three genes, and the others to two 

each (Figure 2.3).  

We assessed whether the 18 SNP loci identified as outliers from our DAPC analyses 

overlapped with haplotypes from Schiebelhut et al. (2018) that were the most discriminatory between 

post and pre-SSWS adults in their samples from California. For this, we compared the 30-kb ranges 

encompassing our SNP outliers to the haplotype coordinates from Schiebelhut et al. (2018). We 
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detected no overlap in the two sets of outliers, with the shortest distance detected as ~257 kb (Table 

S2.5).  

 

Discussion 

The recent outbreaks of SSWS at multiple coastal sites caused severe population declines in 

several sea star species. Mitigation techniques for addressing outbreaks when the causative agent(s) is 

unknown should run in parallel with studies attempting to determine the cause (Eisenlord et al. 2016). 

With rising sea water temperatures resulting in a higher prevalence of marine diseases (Harvell et al. 

2002; Tracy et al. 2019), we are likely to see similar scenarios of mass mortality outbreaks impacting 

marine species more frequently and having little time to address management or conservation plans. 

Assessing the potential for natural population resilience is a critical step in predicting the long-term 

fate of affected species and of the communities they in turn influence. For example, selectively rearing 

disease-resistant oysters in hatcheries has been a useful tool in avoiding disease outbreaks that are 

decimating wild populations (Agnew et al. 2020; Dégremont, Garcia, and Allen 2015). While many 

marine species are not amenable for selective breeding, examining genomic variation in natural 

populations can address whether these species have the genetic makeup for adaptation to marine 

diseases on their own.  

In this study, we took advantage of the co-occurrence of wasting and apparently normal 

individuals of Pisaster ochraceus in central Oregon to scan for genomic regions that potentially predict 

individual SSWS status. After genotyping nearly 72,000 SNP loci across 133 individuals, we found no 

strong patterns of differentiation between wasting and apparently normal individuals. Loci with 

elevated Fst were not clearly concentrated as peaks in any genomic region, and no single locus showed 

a statistically significant level of allele frequency differences. Using a multivariate approach as a 

complement to the locus-specific Fst analyses, 18 SNP loci stood out as contributing to genomic 

differentiation between the two groups of individuals based on disease status. Overall, we argue that a 

genetic basis for SSWS resilience in P. ochraceus is probably weak, but we identified a list of genomic 

regions and functional candidates that may serve as a basis for studies of gene expression, physiology 

or comparative genomics during future SSWS outbreaks.  

While the proximate cause(s) of SSWS at the individual level are still unknown, recent 

experimental studies are consistent with a pathogen agent. For example, individuals that were wasting 

in the laboratory showed physiological and gene expression responses that suggest innate immunity, 

cytokine-like systems and tissue remodeling (Fuess et al. 2015; Gudenkauf and Hewson 2015; Ruiz‐

Ramos et al. 2020). Our findings showed no evidence for a strong genetic component to SSWS 

tolerance or resistance, but the weakly associated loci we identified may have small but cumulative 

effects, which is expected for a polygenic trait. This trait may hence require much higher powered 

studies for detecting associated loci with more precision (Gagnaire and Gaggiotti 2016).  
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Schielbelhut et al. (2018) detected allelic shifts in grossly normal P. ochraceus adults and 

juveniles before and after the SSWS outbreak in California. They found three loci putatively under 

selection and reported on 100 discriminatory haplotypes between time periods. Interestingly, the 18 

SNP loci we detected as most discriminatory in our samples did not occur within 30 kb of those 

reported by Schielbelhut et al. (2018), and most were between 250 kb and 2 Mb apart. Lack of overlap 

in these genomic regions is perhaps not surprising given the multitude of differences between the 

studies, such as year of sampling, the health status of sea stars and geographical location. For instance, 

SSWS is known to be associated with spikes in sea water temperature (Bates, Hilton, and Harley 2009; 

Eckert, Engle, and Kushner 1999; Eisenlord et al. 2016; Kohl, McClure, and Miner 2016), and daily 

deviations from annual sea water temperatures in Oregon were more prevalent in 2013/2014 than in 

California (Miner et al. 2018). Such relevant environmental differences between California and Oregon 

may hence also cause different selective pressures. Moreover, the reduced representation nature of 

RADseq and the use of different restriction enzymes suggest that a lack of overlap between different 

study outlier markers is not indicative of a lack of biological relevance.  

The scarcity of SSWS-associated loci detected is also possibly a result of reduced coverage 

from the inherent nature of RADseq methods (Lowry et al. 2017a). While RADseq is an efficient and 

cost-effect method for producing thousands of SNPs along the entire genome, these markers remain 

sparse. Despite the limitations, many RADseq studies have found loci attributed to adaptive selection 

when coverage is adequate (Epstein et al. 2016; Lowry et al. 2017a; McKinney et al. 2017). Marker 

density aimed at detecting phenotype–genotype associations is recommended to be high relative to LD 

in the target species (Lowry et al. 2017a). Based on this metric, our RADseq effort in this study 

adequately covers the full genome, with on average 2.5 SNPs found per every 15-kb linkage block. 

Therefore, we argue that our results are not due to low marker density, but perhaps may be improved 

by genotyping a higher number of individuals.  

Our study joins that of Schielbelhut et al. (2018) and Ruiz-Ramos et al. (2020) in assessing 

genomic variation in the keystone species P. ochraceus and highlighting the importance of 

understanding the causes and responses to devastating SSWS outbreaks. While current patterns remain 

obscure, the accumulation of putative functional genomic regions will serve as invaluable resources for 

continued field and laboratory studies. In addition to physiological and transcriptomic experiments, we 

suggest the need for a concerted effort to sample large numbers of wasting and apparently unaffected 

individuals across several geographical regions, and ideally using low-coverage whole-genome 

sequencing for substantially increased power (Lou et al., 2021).  

 
 
 
 
 
 
 
 



 

 

19 

Acknowledgements  

We thank Kris Bauer, Laurel Field, Skylar Peven, Bruce Menge, Brittany Poirson, Amanda Coração, 

Melissa Britsch, Jenna Sullivan, Chenchen Shen, and Jonathan Robinson for help with sample 

collections and DNA extractions. Thanks go to Mark Dasenko for assistance with Illumina sequencing. 

We would also like to thank Lauren Schiebelhut for access to the genome assembly, and Eli Meyer 

who provided support on 2bRAD preparation and processing. This work was supported by Oregon 

State University startup funds to F.S.B. All Pisaster density data were provided by B.A. Menge using 

research supported by National Science Foundation DEB-LTREB Awards 1050694 and 1554702 to 

B.A. Menge.  

 
Data Accessibility 

Illumina sequence reads are deposited in the NCBI Sequence Read Archive (SRA), in accessions 

SRR13611638–SRR13611837.  

 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 



 

 

20 

References 

Aalto, E. A., Lafferty, K. D., Sokolow, S. H., Grewelle, R. E., Ben-Horin,T., Boch, C. A., Raimondi, 
 P. T., Bograd, S. J., Hazen, E. L., Jacox, M. G.,Micheli, F., &  De Leo,G. A. (2020). Models 
 with environmental drivers offer a plausible mechanism for the rapid spread of infectious 
 disease outbreaks in marine organisms. Scientific Reports, 10(1), 5975.  
 
Agnew, M. V., Friedman, C. S., Langdon, C., Divilov, K., Schoolfield, B., Morga, B., Degremont, L., 
 Dhar, A. K., Kirkland, P., Dumbauld, B., & Burge, C. A. (2020). Differential mortality and 
 high viral load in naive Pacific oyster families exposed to OsHV-1 suggests tolerance rather 
 than resistance to infection. Pathogens, 9(12), 1057.  
 
Aquino, C. A., Besemer, R. M., DeRito, C. M., Kocian, J., Porter, I. R., Raimondi, P. T., Rede, J. E., 
 Schiebelhut, L. M., Sparks, J. P., Wares, J. P., & Hewson, I. (2021). Evidence that 
 microorganisms at the animal-water interface drive sea star wasting disease. Frontiers in 
 Microbiology, 11. 
 
Bates, A., Hilton, B., & Harley, C. (2009). Effects of temperature, season and locality on wasting 
 disease in the keystone predatory sea star Pisaster ochraceus. Diseases of Aquatic Organisms, 
 86, 245–251. 
 
Behringer, D. C., Silliman, B. R., & Lafferty, K. D. (2018). In D. C. Behringer, B. R. Silliman, & K. 
 D. Lafferty (Eds.), Marine disease ecology. Oxford University Press. Bucci, C., Francoeur, 
 M., McGreal, J., Smolowitz, R., Zazueta-Novoa, V., Wessel, G. M., & Gomez-Chiarri, M. 
 (2017). Sea star wasting disease in Asterias forbesi along the Atlantic Coast of North 
 America. PLoS One, 12(12), e0188523.   
 
Burge, C. A., Mark Eakin, C., Friedman, C. S., Froelich, B., Hershberger, P. K.,  Hofmann, E. E., 
 Petes, L. E., Prager, K. C., Weil, E., Willis, B. L., Ford, S. E.,  & Harvell, C. D. (2014). 
 Climate change influences on marine infectious diseases: Implications for management and 
 society. Annual Review of Marine Science, 6(1), 249–277. 
 
Burt, J. M., Tinker, M. T., Okamoto, D. K., Demes, K. W., Holmes, K., & Salomon, A. K. (2018). 
 Sudden collapse of a mesopredator reveals its complementary role in mediating rocky reef 
 regime shifts. Proceedings of the Royal Society B: Biological Sciences, 285(1883), 20180553.  
 
Catchen, J. M., Amores, A., Hohenlohe, P., Cresko, W., & Postlethwait, J. H. (2011). Stacks: Building 
 and genotyping loci de novo from short-read sequences. G3, 1(3), 171–182. 
 
Catchen, J. M., Hohenlohe, P. A., Bassham, S., Amores, A., & Cresko, W. A. (2013). Stacks: An 
 analysis tool set for population genomics. Molecular Ecology,  22(11), 3124–3140. 
 
Danecek, P., Auton, A., Abecasis, G., Albers, C. A., Banks, E., DePristo, M. A.,  Handsaker, R. E., 
 Lunter, G., Marth, G. T., Sherry, S. T., McVean, G., & Durbin, R., & Group, 1000 Genomes 
 Project Analysis (2011). The variant call format and VCFtools. Bioinformatics, 27(15), 2156–
 2158. 
 
Dégremont, L., Garcia, C., & Allen, S. K. (2015). Genetic improvement for disease resistance in 
 oysters: A review. Journal of Invertebrate Pathology, 131, 226–241. 
 
Eckert, G. L., Engle, J. M., & Kushner, D. J. (1999). Sea star disease and population declines at the 
 Channel Islands. In Proceedings of the Fifth California Islands Symposium (pp. 390–393). 
 Minerals Management Service. 
 
Eisenlord, M. E., Groner, M. L., Yoshioka, R. M., Elliott, J., Maynard, J., Fradkin, S., Turner, M., 
 Pyne, K., Rivlin, N., van Hooidonk, R., & Harvell, D. C. (2016). Ochre star mortality during 



 

 

21 

 the 2014 wasting disease epizootic: Role of population size structure and temperature. 
 Philosophical Transactions of the Royal Society B: Biological Sciences, 371(1689).  
 
Epstein, B., Jones, M., Hamede, R., Hendricks, S., McCallum, H., Murchison, E. P., Schönfeld, B., 
 Wiench, C., Hohenlohe, P., & Storfer, A. (2016). Rapid evolutionary response to a 
 transmissible cancer in Tasmanian devils. Nature Communications, 7(1), 12684.  
 
Foll, M., & Gaggiotti, O. (2008). A genome-scan method to identify selected loci appropriate for both 
 dominant and codominant markers: A Bayesian perspective. Genetics, 180(2), 977–993. 
 
Fuess, L. E., Eisenlord, M. E., Closek, C. J., Tracy, A. M., Mauntz, R., Gignoux-Wolfsohn, S., 
 Moritsch, M. M., Yoshioka, R., Burge, C. A., Harvell, C. D., Friedman, C. S., Hewson, I., 
 Hershberger, P. K., & Roberts, S. B. (2015). Up in arms: Immune and nervous system 
 response to sea star wasting disease. PLoS One, 10(7), e0133053. 
 
Gagnaire, P.-A., & Gaggiotti, O. E. (2016). Detecting polygenic selection in marine populations by 
 combining population genomics and quantitative genetics approaches. Current Zoology, 
 62(6), 603–616. 
 
Gravem, S. A., Heady, W. N., Saccomanno, V. R., Alvastad, K. F., Gehman, A. L. M., Frierson, T. N., 
 & Hamilton, S. L. (2021). Sunflower Sea Star (Pycnopodia helianthoides). IUCN Red List of 
 Threatened Species. 
 
Groner, M. L., Maynard, J., Breyta, R., Carnegie, R. B., Dobson, A., Friedman, C. S., Froelich, B., 
 Garren, M., Gulland, F. M. D., Heron, S. F., Noble, R. T., Revie, C. W., Shields, J. D., 
 Vanderstichel, R., Weil, E., Wyllie-Echeverria, S., & Harvell, C. D. (2016). Managing marine 
 disease emergencies in an era of rapid change. Philosophical Transactions of the Royal 
 Society B: Biological Sciences, 371(1689), 20150364.  
 
Gudenkauf, B. M., & Hewson, I. (2015). Metatranscriptomic analysis of Pycnopodia helianthoides 
 (Asteroidea) affected by sea star wasting disease. PLoS One, 10(5).  
 
Harvell, D., Aronson, R., Baron, N., Connell, J., Dobson, A., Ellner, S., Gerber, L., Kim, K., Kuris, A., 
 McCallum, H., Lafferty, K., McKay, B., Porter, J., Pascual, M., Smith, G., Sutherland, K., & 
 Ward, J. (2004). The rising tide of ocean diseases: unsolved problems and research priorities. 
 Frontiers in Ecology and the Environment, 2(7), 375–382. 
 
Harvell, D. C., Mitchell, C. E., Ward, J. R., Altizer, S., Dobson, A. P., Ostfel, R. S., & Samuel, M. D. 
 (2002). Climate warming and disease risks for terrestrial and marine biota. Science, 
 296(5576), 2158–2162. 
 
Harvell, D. C., Montecino-Latorre, D., Caldwell, J. M., Burt, J. M., Bosley, K.,  Keller, A., Heron, S
 . F., Salomon, A. K., Lee, L., Pontier, O., Pattengill-Semmens, C., & Gaydos, J. K. (2019). 
 Disease epidemic and a marine heat wave are associated with the continental-scale collapse of 
 a pivotal predator (Pycnopodia helianthoides). Science Advances, 5(1), eaau7042.  
 
Hewson, I., Bistolas, K. S. I., Quijano Cardé, E. M., Button, J. B., Foster, P. J., Flanzenbaum, J. M., 
 Kocian, J., & Lewis, C. K. (2018). Investigating the complex association between viral 
 ecology, environment, and northeast Pacific Sea Star Wasting. Frontiers in Marine Science, 
 5.   
 
Hewson, I., Button, J. B., Gudenkauf, B. M., Miner, B., Newton, A. L., Gaydos, J. K., Wynne, J., 
 Groves, C. L., Hendler, G., Murray, M., Fradkin, S., Breitbart, M., Fahsbender, E., Lafferty, 
 K. D., Kilpatrick, A. M., Miner, C. M., Raimondi,  P., Lahner, L., Friedman, C. S., … 
 Harvell, C. D. (2014). Densovirus associated with sea-star wasting disease and mass 



 

 

22 

 mortality. Proceedings of the National Academy of Sciences of the United States of America, 
 111(48), 17278–17283. 
 
Hewson, I., Sullivan, B., Jackson, E. W., Xu, Q., Long, H., Lin, C., Quijano Cardé, E. M., Seymour, J., 
 Siboni, N., Jones, M. R. L., & Sewell, M. A. (2019). Perspective: Something Old, Something 
 New? Review of Wasting and Other Mortality in Asteroidea (Echinodermata). Frontiers in 
 Marine Science, 6.  
 
Jackson, E. W., Wilhelm, R. C., Johnson, M. R., Lutz, H. L., Danforth, I., Gaydos, J. K., Hart, M. W., 
 & Hewson, I. (2020). Diversity of sea star-associated  densoviruses and transcribed 
 endogenous viral elements of densovirus origin. Journal of Virology, 95(1).  
 
Jombart, T. (2015). An introduction to adegenet 2.0.0. Retrieved from http://adegenet.r-forge.r-
 project.org/files/ tutor ial-basics.pdf 
 
Jombart, T., Devillard, S., & Balloux, F. (2010). Discriminant analysis of principal components: A new 
 method for the analysis of genetically structured populations. BMC Genetics, 11(1), 94.  
 
Kohl, W. T., McClure, T. I., & Miner, B. G. (2016). Decreased temperature facilitates short-term sea 
 star wasting disease survival in the keystone intertidal sea star Pisaster ochraceus. PLoS One, 
 11(4), e0153670.  
 
Lloyd, M. M., & Pespeni, M. H. (2018). Microbiome shifts with onset and progression of Sea Star 
 Wasting Disease revealed through time course sampling. Scientific Reports, 8(1), 16476.  
 
Lou, R. N., Jacobs, A., Wilder, A. P., & Therkildsen, N. O. (2021). A beginner’s guide to low-
 coverage whole genome sequencing for population genomics.  Molecular Ecology, 
 mec.16077.  
 
Lowry, D. B., Hoban, S., Kelley, J. L., Lotterhos, K. E., Reed, L. K., Antolin, M. F., & Storfer, A. 
 (2017a). Breaking RAD: an evaluation of the utility of restriction site-associated DNA 
 sequencing for genome scans of adaptation. Molecular Ecology Resources, 17(2), 142–152. 
 
Lowry, D. B., Hoban, S., Kelley, J. L., Lotterhos, K. E., Reed, L. K., Antolin, M. F., & Storfer, A. 
 (2017b). Responsible RAD: Striving for best practices in population genomic studies of 
 adaptation. Molecular Ecology Resources, 17(3), 366–369. 
 
McKinney, G. J., Larson, W. A., Seeb, L. W., & Seeb, J. E. (2017). RADseq provides unprecedented 
 insights into molecular ecology and evolutionary genetics: Comment on Breaking RAD by 
 Lowry et al. (2016). Molecular Ecology Resources, 17(3), 356–361. 
 
Menge, B. A., Cerny-Chipman, E. B., Johnson, A., Sullivan, J., Gravem, S., & Chan, F. (2016a). 
 Correction: Sea star wasting disease in the keystone predator Pisaster ochraceus in Oregon: 
 Insights into differential population impacts, recovery, predation rate, and temperature effects 
 from long-term research. PLoS One, 11(6), e0157302. 
 
Menge, B. A., Cerny-Chipman, E. B., Johnson, A., Sullivan, J., Gravem, S., & Chan, F. (2016b). Sea 
 star wasting disease in the keystone predator Pisaster ochraceus in Oregon: Insights into 
 differential population impacts, recovery, predation rate, and temperature effects from long-
 term research. PLoS One, 11(6), e0157302.  
 
Miner, C. M., Burnaford, J. L., Ambrose, R. F., Antrim, L., Bohlmann, H., Blanchette, C. A., Engle, J. 
 M., Fradkin, S. C., Gaddam, R., Harley, C. D. G., Miner, B. G., Murray, S. N., Smith, J. R., 
 Whitaker, S. G., & Raimondi, P. T. (2018). Large-scale impacts of sea star wasting disease 
 (SSWD) on intertidal sea stars and implications for recovery. PLoS One, 13(3), e0192870.  
 



 

 

23 

Montecino-Latorre, D., Eisenlord, M. E., Turner, M., Yoshioka, R., Harvell, C. D., Pattengill-
 Semmens, C. V., Nichols, J. D., & Gaydos, J. K. (2016) Devastating transboundary impacts of 
 sea star wasting disease on subtidal asteroids. PLoS One, 11(10), e0163190.  
 
Nei, M., Maruyama, T., & Chakrabort, R. (1975). The bottleneck effect and genetic variability in 
 populations. Evolution, 29, 1–10. 
 
Paine, R. T. (1966). Food web complexity and species diversity. The American Naturalist, 100(910), 
 65–75. 
 
Paine, R. T. (1969). A note on trophic complexity and community stability. The American Naturalist, 
 103, 91–93. 
 
Paine, R. T. (1974). Intertidal community structure. Oecologia, 15, 93–120. 
 
Pratchett, M. S. (1999). An infectious disease in crown-of- thorns starfish on the Great Barrier Reef. 
 Coral Reefs, 18(3), 272.  
  
Pritchard, J. K., Stephens, M., & Donnelly, P. (2000). Inference of population structure using 
 multilocus genotype data. Genetics, 155, 945–949. 
 
Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A. R., Bender, D., Maller, J., Sklar, 
 P., de Bakker, P. I. W., Daly, M. J., & Sham, P. C. (2007). PLINK: A tool set for whole-
 genome association and population-based linkage analyses. The American Journal of Human 
 Genetics, 81(3), 559–575. 
 
Robinson, J. T., Thorvaldsdóttir, H., Winckler, W., Guttman, M., Lander, E. S., Getz, G., & Mesirov, 
 J. P. (2011). Integrative genomics viewer. Nature Biotechnology, 29(1), 24–26. 
 
Ruiz-Ramos, D. V., Schiebelhut, L. M., Hoff, K. J., Wares, J. P., & Dawson, M. N. (2020). An initial 
 comparative genomic autopsy of wasting disease in sea stars. Molecular Ecology, 29(6), 
 1087–1102. 
 
Rumble, S. M., Lacroute, P., Dalca, A. V., Fiume, M., Sidow, A., & Brudno, M.  (2009). SHRiMP: 
 Accurate mapping of short color-space reads. PLoS Computational Biology, 5(5), e1000386.  
 
Schiebelhut, L. M., Puritz, J. B., & Dawson M. N. (2018). Decimation by sea star wasting disease and 
 rapid genetic change in a keystone species, Pisaster ochraceus. Proceedings of the National 
 Academy of Sciences, 115(27), 7069–7074. 
 
Schultz, J. A., Cloutier, R. N., & Côté, I. M. (2016). Evidence for a trophic cascade on rocky reefs 
 following sea star mass mortality in British Columbia. PeerJ, 4, e1980.  
 
Shapiro, M. D., Kronenberg, Z., Li, C., Domyan, E. T., Pan, H., Campbell, M., Tan, H., Huff, C. D., 
 Hu, H., Vickrey, A. I., Nielsen, S. C. A., Stringham, S. A., Hu, H., Willerslev, E., Gilbert, M. 
 T. P., Yandell, M., Zhang, G., & Wang, J. (2013). Genomic diversity and evolution of the 
 head crest in the rock pigeon. Science, 339(6123), 1063–1067. 
 
Tracy, A. M., Pielmeier, M. L., Yoshioka, R. M., Heron, S. F., & Harvell, D. C. (2019). Increases and 
 decreases in marine disease reports in an era of global change. Proceedings of the Royal 
 Society B: Biological Sciences, 286(1912), 20191718.  
 
Tracy, A. M., Weil, E., & Harvell, D. C. (2020). Warming and pollutants interact to modulate 
 octocoral immunity and shape disease outcomes. Ecological Applications, 30(2), e02024.  
 



 

 

24 

Wang, S., Meyer, E., McKay, J. K., & Matz, M. V. (2012). 2b-RAD: a simple and flexible method for 
 genome-wide genotyping. Nature Methods, 9(8), 808–810. 
 
Weir, B. S., & Cockerham, C. C. (1984). Estimating F-statistics for the analysis of population 
 structure. Evolution, 38(6), 1358–1370. 
 
Zann, L., Brodie, J., & Vuki, V. (1990). History and dynamics of the crown-of-thorns starfish 
 Acanthaster planci (L.) in the Suva area, Fiji. Coral Reefs, 9(3), 135– 144. 
 
Zenger, K. R., Richardson, B. J., & Vachot-Griffin, A.-M. (2003). A rapid population expansion 
 retains genetic diversity within European rabbits in Australia.  Molecular Ecology, 12(3), 
 789–794. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

25 

 

FIGURES AND TABLES 

 

Figure 2.1: Tests of differentiation across SNP loci (n = 71,784) between wasting and apparently 
normal Pisaster ochraceus from central Oregon. (1) Weir & Cockerham’s Fst. (b) The p-values for 
differentiation at each locus. Red dashed line marks the lowest FDR adjusted value of 0.172.  
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Figure 2.2: Discriminant analyses of principal components (DAPC) comparing apparently normal (n = 
74) to wasting (n = 59) sea stars. (a) Distribution of scores for each group. Tick marks on the x-axis 
represent individual sea stars. (b) Loadings of loci associated with highest between-group variance. 
Loci above the dashed red line were considered outliers and examined further. Numbers above outlier 
peaks are locus IDs, which can be found in Tables S2.2 and S2.3.  
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Figure 2.3: Landscape of Fst and protein-coding genes surrounding outlier SNPs along chromosome 8. 
Thin grey bars on the top panel indicate positions of the outlier SNPs (positions 5,198,014, 17,327,004, 
and 17,814,546 bp). Insets on the bottom panel depict a closeup with a 30-kb window centered at each 
outlier SNP (highlighted in red). Blue boxes cover the coordinates of protein-coding genes, with thin 
vertical lines depicting exons.  
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Table 2.1: Summary of field surveys of prevalence of SSWS in Pisaster ochraceus in the central 
Oregon coast. 
 

Site 
Mean 
total 

observed 

% 
Apparently 

Normal 

% 
Wasting 

% 
Lesions 

% 
Arm(s) 

lost 

% 
Losing 

grip 

% 
Disintegrating 

Fogarty Creek 484 93.9 6.1 0.0 0.0 0.0 100.0 
Boiler Bay 316 90.0 10.0 28.6 71.4 0.0 0.0 

Yachats Beach 360 93.5 6.5 77.8 22.2 0.0 0.0 
Strawberry Hill 495 94.8 5.2 72.3 27.7 0.0 0.0 

Tokatee Klootchman 180 90.3 9.7 50 25 25.0 0.0 
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CHAPTER 3 – OCEAN ACIDIFICATION INFLUENCE ON GENE EXPRESSION PATTERNS 
DURING SETTLEMENT IN CRASSOSTREA GIGAS 

 
Andrea R. Burton, Evan Durland, & Chris Langdon 

 

Abstract 

 Anthropogenic carbon emissions increase the partial pressure of atmospheric carbon dioxide 

(pCO2) which is then dissolved into our oceans, resulting in ocean acidification (OA). OA leads to 

acidified conditions which can impair the growth of many calcifying species, especially in early 

developmental stages. Little is known about how this impacts the process of settlement in organisms, 

such as marine bivalve larvae, that require rapid rates of calcification to attach themselves to a 

substrate. To investigate functional consequences of OA for settlement i.e., the process of larval 

attachment, larvae of the Pacific oyster (Crassostrea gigas) were grown and induced to settle in either 

acidified or ambient seawater conditions, using selected families from the Molluscan Broodstock 

Program. Mechanisms underlying the effects of OA on attachment success were examined through 

gene expression profiling using RNAseq for non-attached individuals and attached spat from each OA 

condition. Differences in gene expression were evaluated using a negative binomial contrast model to 

isolate genes related to attachment that were impacted by OA conditions. There were 44% higher rates 

of metamorphosed individuals in ambient conditions compared with OA conditions, but no difference 

in settlement rates. There were 453 differentially expressed genes in the non-attached larvae and spat 

(i.e., pediveliger larvae and non-attached, metamorphosed spat). There were 943 genes related to 

attachment process that were differentially expressed in OA conditions, followed by no differences in 

gene expression in attached spat. Genes from these models were enriched in 13 GO terms differentially 

expressed between ambient and OA treatments in non-attached individuals and 31 GO terms related to 

attachment. Three of these GO terms were upregulated in non-attached larvae and spat but were 

downregulated when isolating genes related to attachment. Differences in the gene expression patterns 

of non-attached individuals and attachment under OA conditions highlight the need to differentiate 

between metamorphosis and settlement as they have different physiological processes. These findings 

identify genes and biological processes associated with effects of OA on settlement in C. gigas.  

 

Introduction 

 Ocean acidification (OA) due to rising carbon dioxide emissions is an increasing threat to 

marine life. This is especially concerning for organisms found along the West Coast of North America 

as it is subject to periodic upwelling, which brings CO2-rich water to surface resulting in coastal OA 

(Hales et al. 2006). Since the industrial revolution, the ocean’s pH has dropped 0.1 units (Caldeira and 

Wickett, 2003; Hoegh-Guldberg et al., 2007), altering the ocean’s carbonate chemistry and negatively 

impacting marine calcifying organisms. Upwelling brings cool, nutrient-rich waters from depth that are 

enriched in dissolved carbon dioxide (Barton et al. 2012; Feely et al. 2008). The California Current has 
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seasonal upwelling during the summer (Feely et al., 2008), which increases the frequency in which 

coastal organisms are exposed to these conditions. While upwelling of acidified seawater is not a new 

phenomenon, the continued shift in global carbonate chemistry has exacerbated the acidification from 

these upwelling events. By 2050, the California Current is predicted to reach undersaturated aragonite 

levels throughout the instead of periodically (Gruber et al., 2012), leaving many calcifying organisms 

vulnerable.  

  The responses of organisms to acidified seawater varies widely among species and life 

stages, with the most commonly impacted traits being calcification of shells, growth, reproduction, and 

survival (Kroeker et al., 2010). The biological impacts of OA have been examined in many taxa, 

ranging from mollusks (Gazeau et al., 2013; Kroeker et al., 2010; Waldbusser et al., 2015), corals 

(Kleypas et al., 1999), crustaceans (Stillman et al., 2020), echinoderms (Kurihara and Shirayama, 

2004; Shirayama, 2005), and calcifying plankton (Riebesell et al., 2000; Orr et al., 2005). Many 

studies have focused on early developmental stages of invertebrates, such as urchins, bivalves and 

crustaceans, due to their increased vulnerability to OA (Kroeker et al., 2010). Early in development, 

larvae of these species are more sensitive to environmental conditions, resulting in overall higher rates 

of mortality (Gosselin and Qian, 1997). In many bivalve species acidified seawater presents 

undersaturated conditions in which shell formation is thermodynamically unfavorable (Waldbusser et 

al. 2015), which then impedes larval development (Timmins-Schiffman et al., 2013; Waldbusser et al., 

2015). As a result, OA has been found to decrease larval growth rates, increase shell abnormalities, and 

decrease survival rates (Byrne & Przeslawski, 2013; Parker et al., 2013; Ross et al., 2011). It is during 

early developmental stages that calcifying organisms first deposit their calcium carbonate shells and 

skeleton, which is energetically demanding (Frieder et al., 2017; Kurihara, 2008a).  

In bivalves, there are five stages of development before becoming an adult: embryo, D-hinged 

larvae, veliger larvae, pediveliger larvae, and juvenile (spat) stage (Figure 3.1D). There are two critical 

stages in which larvae rely mainly on endogenous energy reserves: 1) during embryogenesis, from 

fertilization until the prodissoconch I larvae start feeding, and 2) during metamorphosis of larvae 

which become spat (Waldbusser et al., 2015). The prodissoconch I stage is when trochophore larvae 

first deposit their calcified shells, becoming a D-hinged larvae. Transcriptional changes associated with 

the formation of the shell of prodissoconch I are strongly affected by OA treatments 8-18 hours 

post-fertilization (De Wit et all. 2018; Wright-LaGreca et al. 2022). Reduced seawater aragonite 

saturation (Ωarag) due to high pCO2 can result in morphological abnormalities of the shells of veliger 

larvae (Kurihara, 2008b; Waldbusser et al., 2015). In addition, acidification of sea water (lower pH, 

higher pCO2 and reduced Ωarag) can create a multi-stressor environment that impacts larval 

development and metabolism (Dineshram et al., 2012; Waldbusser et al. 2015). Settlement is the final 

bottleneck during development that indicates successful development. During settlement, individuals 

attach themselves to a substrate prior to undergoing metamorphosis. Settlement success is highly 

variable under high pCO2 conditions and is largely impacted by fitness at different early developmental 



 

 

31 

stages (Durland et al., 2019). Examining the impacts of environmental pressure, such as OA, only at 

specific early life stages may miss the overall response. For instance, Durland et al. (2021a) saw 

reversal of fitness effects across genotypes; frequency of several alleles reversed as juveniles 

developed from veliger larval stages and went through settlement. This study suggests that fitness of an 

individual cannot be understood from a single developmental stage, but rather the overall success 

throughout development to the final stage of attachment and metamorphosis. Therefore, assessing the 

impact of OA conditions on larval oyster settlement is particularly important. In this study, we focus 

on genes relating to one of the two processes important to settlement, attachment. 

Prior to settlement, veliger larvae develop into pediveliger larvae, indicated by the presence of 

an eye spot and a ciliated foot. Attachment is the process of individuals cementing themselves to 

substrate preceding metamorphosis (attached spat). Metamorphosis is an energetically taxing stage in 

development in which pediveliger larvae transition into juveniles (Haws, 1993). Not all individuals 

have the physiological capacity to attach prior to metamorphosis, therefore, non-settled or non-attached 

spat are individuals that have metamorphosed but have not cemented themselves to the substrate prior 

to metamorphosis. Mortality is high during metamorphosis due to the energetic demands during this 

stage (Haws, 1993). Improved larval diets prior the metamorphosis has been shown to decrease larval 

mortality during settlement, suggesting that improving nutritional condition of pediveligers can limit 

metabolic stress by improving energy reserves (Gallager et al. 1986, Gallager & Mann 1986, Helm 

1991, Cooteau 1994, Pernet & Tremblay 2004).   

Two important larval developmental states immediately precede metamorphosis: (1) 

“competency”, in which pediveliger larvae develop an eye spot and ciliated foot and (2) attachment of 

pediveliger larvae to the substrate (settlement) (Degnan and Morse, 1995; Pawlik, 2020). Cementation, 

process for attachment, consists of producing a calcium calcite layer from the mantle attaching 

individual to substrate (Yamaguchi, 1994). Many studies have evaluated the impacts of OA on early 

life stages including metamorphosis of the Pacific oyster Crassostrea gigas, but they have not reported 

gene expression patterns of settlement under OA conditions (Kurihara, 2008a; Barton et al., 2012; De 

Wit et al., 2018). 

To better understand the cellular physiological processes affecting C. gigas during the 

attachment stage of settlement under OA stress, we quantified genome-wide gene expression levels in 

controlled experiments. More specifically, we used RNA-seq to profile transcription levels of larvae 

and spat exposed to high and ambient pCO2 conditions. Identifying genes related to attachment is 

important to understand how OA influences the overall success of larval C. gigas. Results from this 

study highlight the importance of cellular processes, relating to calcification and structural changes 

associated with attachment, that are impacted by OA. 
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Materials and Methods 

Seawater chemistry 

Two sea water treatments were prepared for the exposure experiment, high pCO2 (~1600 

µatm CO2, pH ~7.5-7.6, Warag = 0.9-1.2), and ambient pCO2 (~400 µatm CO2, pH ~7.9-8.1, Warag = 2.3-

2.7). Both treatments were produced using 10 µm-filtered seawater at 25°C and salinity of 32. The 

carbonate chemistry of the high pCO2 seawater was manipulated by aerating two 200-liter tanks 

overnight with an air and CO2 mixture, controlled by a pair of mass flow controllers (Alicat, Tuscon, 

AZ). During the experiment (described below), water changes were conducted every 2 days, at which 

point pH and temperature were measured, and seawater from each replicate was sampled for carbonate 

analyses to account for shifts in carbonate chemistry due to off-gassing or respiration during the 48-

hour cultivation period between water changes. Seawater samples were stored in sealed, gas-tight 350 

ml amber glass bottles and fixed with 30 !l of saturated mercuric chloride (HgCl2). Dr. Burke Hales’ 

lab at Oregon State University analyzed these seawater samples following their carbonate chemistry 

measurements protocol (Bandstra et al., 2006; Hales et al., 2005). Parameters measured were total 

dissolved carbon dioxide (TCO2), pCO2, and seawater pH, and these were then used to calculate the 

saturation states of aragonite (Ωarag) and calcite (Ωcalc) (Table S3.1). Measurements of TCO2 and pCO2 

are known to be highly accurate (Waldbusser et al., 2013), with <0.2% and <5% uncertainty, 

respectively.  

 

Larval culture 

 Larval oysters were produced by strip-spawning male and females from broodstock produced 

by the Molluscan Broodstock Program (MBP). MBP families were largely unrelated having a 

coefficient of co-ancestry of less than 10% (De Melo et al. 2016). Using a semi-factorial cross design, 

19 males and 19 females were crossed, with each male fertilizing 4-6 individual females, forming 95 

unique full-sibling families. Eggs from each family were initially kept in 100-ml beakers in standard 

seawater (same as ambient pCO2) for one-hour to validate fertilization success. Fertilized eggs were 

then rinsed on a 25-µm screen to remove excess sperm before egg concentration of each family was 

quantified and added to a combined pool with equal egg contributions from each family. Pooled eggs 

were then mixed and distributed across 12 10-liter polycarbonate containers (BearVault, San Diego, 

CA) at a density of 20 eggs ml-1, allowing for six replicate containers for each pCO2 treatment. The 

containers were sealed with a lid and silicone sealing ring (McMaster-Carr, Santa Fe Springs, CA) to 

prevent gas exchange with the atmosphere.  

Larvae were fed daily, beginning at the D-hinge stage 48 hours after fertilization. Larval diets 

started with 100% Isochrysis spp. (C-Iso) at 20,000 cells ml-1. Feeding rates increased by 5,000 cells 

ml-1 per day. Beginning on day 2, 5% of the algal diet (by cell number) was substituted with the diatom 

Chaetoceros gracilis (Cg) and this substitution was increased by 5% day-1 until C-Iso and Cg cell 

concentrations were equal on day 11.  
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To reduce the effects of bacterial respiration on pCO2 in the culture units, antibiotics were 

applied prophylactically. Antibiotics were added at each water change starting from day 2, alternating 

between chloramphenicol (2 ppm) or a mixture of ampicillin (10 ppm) and streptomycin (20 ppm). To 

retain slow growing larvae, screen sizes of 25 µm were used up to day 4, 37 µm on day 6, 45 µm on 

day 8, and 64 µm on all subsequent days. Larvae were checked throughout this period to monitor when 

different stages of development first appeared. On day 12, larvae larger than 64 µm were separated 

from non-growing “runts” by sieving. The larvae > 64 µm were aliquoted into smaller 1-liter sealed 

jars at a density of approximately 2,000 larvae liter-1. The jars were set up to be sampled on days 14, 

16, 18, 20, and 22, with four replicates for each time point and treatment (Figure 3.1), resulting in a 

total of 20 jars per pCO2 treatment (40 jars in total). Pediveliger larvae, identified as having eye spots, 

were first observed on 14, indicating that the larvae had reached competency for settlement. Once 

pediveligers were observed, larval sampling commenced with the goal of estimating metamorphic and 

attachment rates.  

 

Metamorphosis and settlement rates 

To identify genes related to the first step in settlement (i.e., attachment process seen in 

attached spat), larvae were induced to settle using epinephrine. Epinephrine is a hormone which 

induces settlement and it allowed us to obtain in a high proportion of larvae undergoing settlement at 

the same time (Bonar et al., 1990). Given that hormonal stimulus is likely to have additional impacts to 

gene expression, prior to sampling, we transferred half of the candidate larvae to another 1-litre jar 

(500 mL each) for two treatments: with epinephrine (Epi) added and a control (Con) which did not 

have epinephrine added. For the Epi treatment, 0.18 mM of epinephrine was added to the jar and 

mixed. Larvae in both the Epi and Con treatments were held in the dark for 2 hours to allow 

epinephrine to take effect (Bonar et al., 1990) (Figure 3.1B, 3.1C).  

To measure metamorphic and attachment rates, sampling was carried out on days 14, 16, 18, 

20 and 22 to count the number of individuals in different life stages (Figure 3.1). Following the 2-hour 

epinephrine (and control) exposure, a subset of 200 mL (~400 individuals) of the 500 mL cultures 

(cultures were split in half before epinephrine exposure) were poured off onto a 64 µm mesh screen 

after mixing. The remaining 300 mL were not used, except on day 22 when we sampled a subset of 

cultures for transcriptomics (see below). Excess cultures were poured on 25 µm sieve to remove debris 

for carbonate measurements. The 64 µm mesh screen collected veliger, pediveliger, and non-attached 

spat (non-attached larvae and spat) and were fixed in formalin for counting. Pediveliger larvae were 

distinguished from veliger as having an eye spot, while non-attached spat was identified as having a 

newly formed shell margin (Figure 3.1D). Attached spat that had cemented themselves on the jar wall 

remained in the jar and were counted separately. The numbers of veliger, pediveliger, non-attached and 

attached spat were used to estimate proportions of metamorphosed and attached spat across the total 

number of living individual oysters larger than 64 µm. The effects of day and pCO2 treatment on 
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metamorphosis rates (non-attached and attached spat) and settlement rates (attached spat) success were 

evaluated by ANOVA (models: Proportion settled or metamorphosed ~ Day + pCO2 treatment + Day: 

pCO2 treatment) (Table 3.1). Prior to the ANOVAs, we confirmed the assumptions of data normality 

(Shapiro-Wilks W = 0.87, p = 0.68) and homogeneity of variances (Breusch-Pagan BP = 4.31, df = 9, p 

= 0.14). Any significant results from the ANOVAs were further assessed by a Tukey honest significant 

difference test to compare settlement (metamorphosis and attachment) between pCO2 treatments on 

each sampling day.  

 

Transcriptomic analyses 

On day 22, additional sampling from each culture was carried out to preserve individuals for 

transcriptomics (Figure 3.1C). Non-attached individuals and spat were collected from the water 

column, while settled spat were those that remained attached to the jar wall after filtering jar contents. 

From the remaining 300 mL, 200 mL (~400 individuals) cultures were poured onto a 240-µm to collect 

non-attached individuals larger than that size, and the run-through water was then poured through 

25µm sieve to remove debris for carbonate measurements (Table S3.1). The > 240 µm mesh screen 

captured pediveliger and non-attached spat (together non-attached individuals) and were then 

preserved in RNAlater. The remaining 100 mL from the ambient and high pCO2 treatments were not 

used. Attached spat were counted before being scraped off the jar wall and preserved in RNAlater. 

Attached spat found in the no-epinephrine (control) exposure treatment were counted, but there was 

insufficient attached spat for RNA analysis. Overall, each replicate (day x pCO2 treatment) produced 

three samples for transcriptomics in attached spat and non-attached individuals: 1) exposure to 

epinephrine, 2) no-epinephrine exposure (control) (~400 non-attached), and 3) settled (attached) spat (0 

to 113 oysters), totaling 36 samples.  

 To quantify gene expression, a tag-based sequencing method was used (Meyer et al. 2011). 

This approach uses oligo-dT primers to target 3’ ends of mRNA molecules, generating short (~100 bp) 

cDNA pools that permit accurate quantification of transcript levels. Total RNA was isolated with the 

Omega Bio-tek E.Z.N.A. tissue RNA Kit (Omega Bio-tek, Norcross, GA). Fragmentation was done by 

heating RNA to 95°C for 15 minutes, which fragments RNA to a size range of 200-300 bp. 

Amplification of cDNA was carried out with 13 cycles (90°C for 5 seconds, annealing 60°C for 30 

seconds, then 72°C for 30 seconds), which was the minimum number of runs required to have each 

sample appear on a gel. During amplification reaction, each sample was barcoded with dual indices to 

allow for pooling. In total, 36 samples were pooled at equimolar amounts and then sequenced across 

two lanes of a HiSeq2500 at the Oregon Health & Science University. Sequenced reads were then 

filtered using publicly available scripts (https://github.com/Eli-Meyer/rnaseq_utilities from), first to 

remove non-template sequences and homopolymer regions greater than 20 bp. Low-quality reads were 

then removed, using a threshold Phred score less than 30. Using SHRiMP (Anderson et al., 2016), the 

remaining high-quality reads were mapped to gene models predicted from the C. gigas reference 
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genome (Zhang et al., 2012), plus adjacent 1-kb regions to allow for imperfections in the limits of the 

gene models. Unique reads aligning to genes were counted, producing a count data set for analyses of 

gene expression.  

Two samples with fewer than 150,000 reads were removed due to insufficient coverage, 

leaving 34 samples in total. Each treatment combination was still represented by at least 3 replicates. 

Pre-processing of the data and differential expression were performed in edgeR (Robinson, McCarthy, 

Smyth 2010). Genes with low counts were removed using the 'filterByExpr' function, and expression 

levels estimated after normalization with trimmed mean of M-values (TMM; Robinson & Oshlack, 

2010). We did not test for epinephrine effects within each pCO2 treatment due to the difficulty of 

parsing factors which differed between these two treatments while also accounting for background 

differences arising from larval development. For instance, cultures exposed to epinephrine likely has 

more non-attached spat than pediveligers due to induction to metamorphose. Measuring differences in 

gene expression between Epi and Con may result in differences in earlier (largely pediveliger larvae) 

and later (having non-attached spat) stages in development rather than the epinephrine exposure alone. 

However, oyster larvae with differentially expressed genes due to epinephrine exposure were expected 

to have similar differences regardless of pCO2 treatments due to both being given the same Epi 

treatment. The interactive effects of seawater acidification and epinephrine are unknown and 

potentially confounding for these analyses. To confirm that differential expression found when 

comparing pCO2 treatments was not due to the interactive effects of epinephrine and pCO2 exposure, a 

multifactorial negative binomial model was used. Expression patterns of non-attached individuals from 

the two exposure (Epi or Con) and pCO2 (High and Amb) treatments to determine if there whether 

epinephrine had an interactive effect with pCO2. The epinephrine-effect model (model 1; Table 3.2): 

 

[(Epihigh – Conhigh) – (Epiamb – Conamb)]      (1) 

 

allowed testing for epinephrine effects while accounting for pCO2 conditions. Out of 15,474 genes 

included in the analysis, no differentially expressed genes were detected, suggesting there was no 

interaction effect of epinephrine and pCO2 treatment. This confirmed that we do not need to account 

for epinephrine effects in non-attached individuals when assessing differential gene expression 

between pCO2 treatments. We could not confirm that epinephrine did not have an interactive effect on 

attached spat as we did not have enough spat from the control treatment to run the same contrast 

model.  

To quantify the main effect of pCO2 treatments on gene expression associated with 

attachment (first stage in settlement), expression in attached spat (Att.Spat) were compared across 

pCO2 levels while accounting for effects on non-attached individuals (Non.Att) (model 2): 

 

(Att.Spathigh – Non.Atthigh) – (Att.Spatamb – Non.Attamb)    (2) 
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Heatmaps were produced to illustrate patterns of gene expression between the two pCO2 treatments for 

the settlement model (model 2) for the top 60 differentially expressed genes, and the three functional 

categories of GO terms (Biological, Molecular, and Cellular) (Table 3.2). Gene expression patterns 

affected by pCO2 treatment were examined between the high and ambient pCO2 treatments for both 

attached spat and non-attached individuals separately to assess the impacts high pCO2 within these 

different developmental stages (Table 3.2: models 3, 4). 

Enrichment analysis was carried out using TopGO (Alexa and Rahnenführer, 2016) to test 

whether certain cellular functions were over- or underrepresented among differentially expressed 

genes. Fisher’s Exact Tests were run using the ‘elim’ method from TopGO to determine significance 

levels at a = 0.01. There were not enough GO terms to look at both up- and down-regulation for both 

the attachment (model 2) as there were only 94 up-regulated and non-attached individuals (model 3) 

with 13 down-regulated genes (Table 3.2). For this reason, all GO terms were enriched regardless of 

directionality of fold change (Table 3.3). GO terms that were downregulated were enriched for 

attachment (model 2) (849 down-regulated genes) while upregulated GO terms enriched from the non-

attached (model 3) (440 up-regulated genes) models (Table 3.2). Any GO terms that were enriched but 

was not unilaterally up- or down-regulated were included with individual genes and their direction of 

change reported (Table S3.2). Gene ontology terms were separated into three classes: molecular 

function, biological processes, and cellular components, producing heatmaps for each class.  

 

Results 

Larval settlement and metamorphosis variation under OA 

 Attached spat was seen on days 18, 20, and 22. Attachment rates among attached spat differed 

on day of sampling (F1,30 = 78.59, p << 0.01), but had no significant difference in pCO2 treatment (F1,30 

= 1.89, p = 0.18), with 2.6, 23.6 and 21.1 percent settlement in both ambient and high pCO2 conditions 

for days 18 through 22, respectively (Table 3.1) (Figure 3.2A). Rates of metamorphosis varied 

significantly across days (F4,30 = 175.76, p < 10-16) and pCO2 levels (F1,30 = 20.76, p = 8.1 x 10-5). An 

interaction effect between the two factors was also detected (F4,39 = 4.84, p = 0.0039) (Table 3.1). A 

post-hoc Tukey HSD test indicated that days 14, 16, and 18 had similar metamorphic rates for high and 

ambient pCO2 treatments (Tukey HSD, p > 0.985 for each). Combined percentages of non-attached 

individuals that were induced to metamorphose were 1.0 on day 14, 3.9 day 16, and 12.6 on day 18 for 

both ambient and high pCO2 (Figure 3.2B). Metamorphic rates were lower in the high pCO2 treatments 

for days 20 and 22 (Tukey HSD, p = 1.1x10-4, p = 6.6 x 10-4), with settled and non-attached spat being 

59 percent higher on day 20 and 28 percent higher on day 22 in the ambient treatment.  
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Transcription profiling 

Sequencing captured 1.5 billion reads (mean of ~17.7 million per sample). After filtering, 516 

million reads were left (~5.9 million per sample), of which 60.5 million reads (687 thousand per 

sample) mapped to the reference transcriptome extracted from Zhang’s et al. (2012) genome. There 

were 934 genes important to attachment (model 2) which were differentially expressed in high and 

ambient pCO2 conditions after correction for developmental stage (Figure 3.3). Test of GO term 

enrichment in these genes detected 31 GO terms (13 molecular function, 9 biological process, 9 

cellular processes; Table 3.2 and Figure 3.4). The 31 GO terms relating to settlement had the following 

common categories: binding (n=6), catalytic activity (n=3), cellular anatomical entity (n=9), cellular 

process (n=4), and metabolic process (n-4) (Table S3.2). Overrepresented GO categories with Fisher 

adjusted p-values less that 0.001 with in the cellular processes category “ribosome” (GO: 0005840, p-

value = 1.20E022), the molecular function category “RNA binding” (GO:0003723, p-value = 8.70E-

09), “ubiquinol-cytochrome-c reductase activity” (GO:0008121, p-value = 6.20E-05), “translation 

elongation factor activity” (GO:0003746, p=0.00015), and in the biological process “translation” (GO: 

0006412, p = 3.10E-06), among more listed in Table 3.1. 

We detected no significant differences in gene expression between attached spat (model 4) in 

ambient and high pCO2 treatments (Table 3.2). However, high pCO2 seawater had a strong effect on 

gene expression of pediveligers and non-attached spat, significantly altering the expression of 453 

genes (model 3). These genes were enriched for 13 GO terms (Table 3.1). We compared these 13 GO 

terms to those related to settlement (model 2). Of these GO terms, 10 were not seen in the attachment 

(model 2): “microtubule-based movement” (GO:0007018), “exodeoxyribonuclease III activity” 

(G):0008853, “ATP=dependent microtubule motor activity” (GO: GO:0008569), “guanyl-nucleotide 

exchange factor activity” (GO:0005085), “RNA-directed DNA polymerase activity” (GO:0003964), 

“actin binding” (GO:0003779), “cytoplasm” (GO:0005737), “cytoskeleton” (G):0005856), and 

“myosin complex” (GO:0016459). The three remaining GO terms were shared across the two models 

but were up-regulated in the water non-settled individuals (model 3) and down-regulated when looking 

at genes related to settlement (model 2). These three GO terms were “RNA binding” (GO:0003723), 

“RNA helicase activity” (GO:0003724), and “ribosome” (GO:0005840). 

   

Discussion  

Larvae reared in high pCO2 seawater showed lower metamorphic rates, but no differences in 

attachment rates i.e., final percent attached spat. The reduced rates in metamorphosis are consistent 

with previous studies which demonstrated the negative effects of high pCO2 exposure on larval 

development (Barton et al., 2012; Frieder et al., 2017). Similar rates of larval settlement for ambient 

and high pCO2 treatments were also observed in Durland et al. (2019) in their experiment done in 

2015. Metamorphosis requires rapid shell formation along with re-organization of body plan (Hadfield, 

2000; Heyland and Moroz, 2006; Li et al., 2019) that would occur in both non-attached and attached 
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spat. Biological processes relating to settlement are not well understood, conceivably due to attachment 

occurring asynchronously with metamorphosis and being difficult to sample in real time (Xu and 

Zhang, 2020). In addition, metamorphosis and settlement are often confusingly used interchangeably in 

many studies (Joyce and Vogeler, 2018), making it difficult to parse our mechanisms relating to 

attachment. This study highlights the need to make the distinction between these stages of development 

along with a better understanding of the mechanisms for settlement.  

 We found numerous gene expression levels related to the attachment process that differed 

between high and ambient pCO2 conditions (model 2), however the function of these genes and how 

they related to attachment and settlement are poorly understood. There are a range of physiological 

functions occurring during settlement that have been reported in similar transcriptomic studies during 

larval development (O’Donnell et al., 2010; Huan, Wang and Liu, 2012; De Wit and Palumbi, 2013; 

De Wit et al., 2018; Durland et al., 2021). In this study, we found gene ontology terms associated with 

a suite of genes enriched in functions relating to binding, catalytic activity, cellular anatomical entity, 

cellular process, and metabolic process (Table 3.3). Among these, cellular anatomical activity, 

localization, and transporter activity are poorly understood in C. gigas and other marine invertebrates 

as their GO terms were not seen in other literature reviews.  

 We know that calcification is important to settlement and can be impacted by high pCO2 

(Yamaguchi, 1994). We saw that high pCO2 downregulated three GO terms relating to catalysis 

activity, structural molecule activity, and cellular processes including “NADH dehydrogenase 

(ubiquinone) activity” (GO:0008137), “transcription corepressor activity” (GO:0005198), and “protein 

folding” (GO:0006457). In similar studies, “NADH dehydrogenase (ubiquinone) activity” was 

differentially expressed in different pCO2 treatments in larval purple sea urchin,  Strongylocentrotus 

purpuratus (Wong et al., 2018). The hard-shelled mussed, Mytilus coruscus, exhibited reduced shell 

formation in high pCO2 treatments, along with downregulation for the GO term “transcription 

corepressor activity” (Zhao et al., 2020). Genes enriched for “protein folding” were differentially 

expressed between competent pediveligers who settled and larvae (Xu and Zhang, 2020). Genes related 

to these functions are predicted to promote DNA transcription and protein synthesis important to 

attachment. This suggests that attachment stage of settlement and calcification may be impeded by 

high pCO2.  

 Three GO terms that were downregulated in high pCO2 treatment relating to the process of 

attachment were upregulated in other studies. GO term “translation” (GO:0006412) were upregulated 

in atlantad heteropods (atlandtidae, Pterotracheoidea), suggesting these genes are related to 

calcification during attachment and are impeded by high pCO2 conditions. In addition, M. coruscus had 

“actin filament binding” (GO:0051015) upregulated in high pCO2 conditions (Zhao et al., 2020). Zhao 

et al. (2020) predicts that there may be a compensatory response against mantle tissue injury, resulting 

in weakened shell formation when exposed to high pCO2. Both studies indicate a species-specific 

response to high pCO2 and differences in allocation of cellular processes to mitigate acidified stress.  
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 Among the genes related to attachment, three switched from being upregulated in non-

attached individuals to downregulated in spat, including: “ribosome” (GO:0005840) and “RNA 

binding” (GO:0003723). The GO term “ribosome” was differentially expressed in between larval and 

juvenile stages of Montastaea faveolata (Reyes-Bermudez et al., 2009). “RNA binding’ was also 

upregulated in atlantad heteropods (Atlantidae, Pterotracheoidea) when exposed to high pCO2 

treatments (Wall-Palmer et al., 2021). Together, these studies suggest that these genes are important 

for metamorphosis and or calcification. These same genes were upregulated in non-attached 

individuals, similarly to M. faveolate and atlantad heteropods, likely to overcompensate to high pCO2 

conditions. However, post-settlement, these genes were downregulated, indicating that these genes 

oscillate from one stage to another. Oscillating gene expression along with stage-specific expression 

patterns allow for improved fitness from one stage to the next (Conaco et al., 2012; Hendriks et al., 

2014; Durland et al. 2021). We see similar patterns of oscillating gene expression in pre-settlement and 

post-attached spat, suggesting that these genes important for different stages. It could be advantageous 

to down-regulate these genes during attachment to conserve energy and these processes for 

metamorphosis.  

The lack of differentially expressed genes between ambient and high pCO2 treatments in 

attached spat stages is likely due to variation across replicates as attached spat in the ambient treatment 

did not exhibit similar expression levels between replicates (Figure 3.3, 3.4). Assuming data to be true, 

similarity in gene expression between pCO2 treatments could be attributed to selective pressures prior 

to settlement. Settlement success in MBP stocks was not impacted by high pCO2 in a similar trial 

conducted in 2015 but resulted in 42% fewer spat in 2016 (Durland et al. 2019). However, mortality 

among larvae during metamorphosis was higher in 2016. Durland et al. (2019) concludes that the 

higher rates of mortality in 2016 were due to pediveliger competency and not high pCO2 conditions. 

This suggests that pCO2 may act as a bottleneck during developmentally demanding stages, while high 

pCO2 has little to no negative impacts on post-settled larvae. However, carryover effects have been 

observed in juveniles reared in high pCO2 conditions (Hettinger et al., 2012). Sampling a few hours 

post settlement may capture genes important to settlement but have not yet negatively been impacted 

by pCO2. However, our dataset is unable to address this hypothesis. Future studies would benefit from 

sampling post settled larvae over time to see if and when these carryover effects present themselves.  

 Another explanation for the lack of differential gene expression in settled spat in high pCO2 

conditions may be due to MBP stock used have be unintentionally selected for greater tolerance to 

acidified conditions (Durland et al. 2019, and 2021b). Durland et al. (2021b) compared MBP larvae to 

those spawned from wild oyster stocks and found that MBP larvae both survived and settled at a higher 

proportion and exhibited substantially less genetic changes across larval development than wild 

oysters. In this same study, they also found that high pCO2 seawater had greater genetic and 

phenotypic impacts on wild stocks, compared to the selected MBP lines. The overall differences in 

genetic changes during larval development suggests that MBP oysters may be adapted to hatchery 



 

 

40 

conditions and, possibly, sub-lethal exposures to acidified seawater. Durland et al. (2019, and 2021b) 

explains that MBP stocks have inadvertently been selected to reduce genetic load, having many 

deleterious alleles. Crosses of family lines managing inbreeding in MBP stocks, there may have been a 

more uniform distribution of negative alleles among families. Having dispersed negative alleles may 

reduce compounding effects of multiple loci, along with possibly reducing the effects of genetic drift. 

Together, these studies highlight the advantages to selectively breeding organisms towards resilience to 

future climate stressors such as OA. More broadly, other studies have demonstrated that standing 

genetic variation of many invertebrate species possesses a range of phenotypes for traits related to OA 

resilience (Barrett & Schluter, 2008; Bitter et al. 2019; Brennan et al., 2021; Pespeni et al., 2013). Post-

attached spat in this study may have similar expression patterns in both pCO2 treatments because they 

are better adapted to such conditions.  

 Our study contributes to the growing body of literature identifying genetic components of 

stress due to OA conditions. OA likely has multiple interactive effects in function processes including: 

“binding”, “catalytic activity”, “cellular anatomical entity”, “cellular processes”, “localization”, 

“metabolic process”, “structural molecular activity”, and “transporter activity”. However, the overall 

complexity makes isolation and description of these effects challenging. Previous studies have 

evaluated how pCO2 influences gene expressions in marine invertebrates and are consistent with our 

findings. However, expression patterns may differ depending on developmental stage. The complexity 

of physiology during settlement process and non-attached individuals highlights the need to distinguish 

processes associated with different developmental stages in future studies 
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FIGURES AND TABLES 

 

 
Figure 3.1: Timeline of experimental design and sampling procedure of C. gigas on the day of 
sampling larvae used for counting and for RNA preservation. (A) Larvae were reared in either ambient 
(yellow) or high pCO2 (orange) treatments for a total of 22 days. Larvae were transferred into 1-liter 
jars on day 12. (B) Sampling for count data occurred on days 14 through 22. Cultures were split in half 
into epinephrine (Epi, checker colored) and non-epinephrine (control, Con, solid colored) treatments. 
Following 2-hours epinephrine exposure, a fifth of the individuals were sampled for counting. Non-
attached individuals were stored and used to count the number of veliger, pediveliger, and non-
attached spat. Attached spat had cemented themselves on the walls of jars and were counted separately. 
The total number of metamorphosed spat in the >64 µm group and attached spat were used to 
calculated percent metamorphosis (non-attached and attached spat) and settlement (attached spat only). 
(C) Transcriptomic along with count measurement sampling occurred on day 22. Non-attached 
individuals were poured off into 240 µm, 64 µm and 25 µm sieves to collect individuals > 240 µm for 
transcriptomics, > 64 µm for count measurements, and < 25 µm for seawater. Filtered seawater was 
then used to measure carbonate chemistry (Table S3.1). Epinephrine exposure and count data was 
sampled using the same procedure from figure 3.1B. The remaining one fifth of cultures were stored in 
RNA later. Attached Spat were kept separate from non-attached individuals by pouring off non-
attached individuals into tube (colored tubes) and scraping spat off the jar wall (clear tubes). (D) The 
different larval stages and when they first appeared are shown in the same 22-day timeline for embryo, 
D-hinged, veliger, pediveliger larvae which metamorphosed into non-attached and attached spat.  
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Figure 3.2: Proportion of individuals > 64 µm who (A) settled (attached spat) and (B) metamorphosed 
(non-attached larvae and non-attached spat) on days 14 through 22, separated by high and ambient 
pCO2 conditions.  
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Figure 3.3: Heatmap showing expression of genes per replicate (attached spat n=4; non-attached 
individuals n=3) for the top 60 differentially expressed genes between high pCO2 (orange) and ambient 
(yellow) treatments, separated by the two stages of attached spat (dark grey) and non-attached 
individuals (pediveligers and non-attached spat) (light grey). Blue indicates low expression, white 
moderate expression, and red indicates high expression.   
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Figure 3.4: Heatmap showing expression of genes per replicate (attached spat n=4, non-attached 
individuals n=3) for the three functional categories of GO terms (Biological, Molecular, and Cellular) 
differentially expressed between high pCO2 (orange) and ambient (yellow) treatments, separated by the 
two stages of attached spat (dark grey) and non-attached individuals (light grey). Blue indicates low 
expression, white moderate expression, and red indicates high expression.   
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Table 3.1: Results from 2-way ANOVA for effect of day and treatment on percent of larvae that settled 
(attached spat) or metamorphosed (non-attached and attached spat). 
 

Model Term DF F-value p-value 

Settled ~ Day + Treatment + Day:Treatment 

Day 4 78.59 1.86e-15 

Treatment 1 1.89 0.18 

Intercept 4 1.37 0.27 

Metamorphosed ~ Day + Treatment + Day:Treatment 

Day 4 175.76 <2.2e-16 

Treatment 1 20.76 8.14e-05 

Intercept 4 4.84 0.0039 
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Table 3.2: Summary of models used to estimate differential gene expression from non-attached individuals (Non.Att) and attached spat (Att.Spat) along with 
epinephrine (Epi) and non-epinephrine exposure (Con) of pediveliger larvae and spat sampled on day 22 within their pCO2 treatments (high and ambient, amb). 
The number of replicates, genes used after filtering, and the number of significantly different up- and down-regulated genes are reported.  
 

Model Test Model Sample Num. Num. of genes Up-regulated Down-regulated 

1 Epinephrine  (Epihigh – Conhigh) – (Epiamb – Conamb) 

Epihigh n = 3 

15474 0 0 
Epiamb n = 3 

Conhigh n = 4 

Conamb n = 4 

2 

pCO2 on attachment 

with correction for 

developmental stage 

(Att.Spathigh – Non.Atthigh) – (Att.Spatamb – Non.Attamb) 

Att.Spathigh n = 4 

11880 94 849 
Att.Spatamb n = 4 

Non.Atthigh n = 3 

Non.Attamb n = 3 

3 
pCO2 on Non-attached larvae 

& spat  
~ pCO2 treatment 

Non.Atthigh n = 3 
7527 440 13 

Non.Attamb n = 3 

4 pCO2 on Attached Spat  ~ pCO2 treatment 
Att.Spathigh n = 4 

9740 0 0 
Att.Spatamb n = 4 

 

 

 



 

 

53 

Table 3.3: List of GO terms from enriched genes which were down regulated from attachment model 

with correction for developmental stage (model 2) looking at ambient versus high pCO2 treatments 

while accounting for stage (attached spat and non-attached individuals) on day 22. GO terms that were 

down-regulated are reported in this Table while individual genes that were either up- or down-

regulated are reported in Table S3.2. 

 

Other GO.ID Term Ann. Sign. Exp. Fisher Cat. Reg. 

binding 

(GO:0005488) 

 

GO:0003723 RNA binding 200 33 7.93 8.70E-09 Mol Down 

GO:0003746 translation elongation factor activity 8 4 0.32 0.00015 Mol Down 

GO:0051015 actin filament binding 9 3 0.36 0.00433 Mol Down 

GO:0003743 translation initiation factor activity 31 5 1.23 0.00687 Mol Down 

GO:0008083 growth factor activity 11 3 0.44 0.00802 Mol Down 

GO:0031369 translation initiation factor binding 4 2 0.16 0.00891 Mol Down 

GO:0008121 ubiquinol-cytochrome-c reductase activity 3 3 0.12 6.20E-05 Mol Down 

catalytic activity 

(GO:0004824) 

GO:0008137 NADH dehydrogenase (ubiquinone) activity 11 4 0.44 0.00064 Mol Down 

GO:0003724 RNA helicase activity 61 7 2.42 0.00995 Mol Down 

cellular anatomical 

entity 

(GO:0110165) 

GO:0099512 supramolecular fiber 83 11 3.06 0.0014 Cell Down 

GO:0043226 organelle 1575 105 58.1 0.0022 Cell Down 

GO:0005685 U1 snRNP 3 2 0.11 0.004 Cell Down 

GO:0005852 eukaryotic translation initiation factor... 10 3 0.37 0.0049 Cell S2 

GO:0015629 actin cytoskeleton 9 5 1.18 0.0058 Cell S2 

GO:0043229 intracellular organelle 1485 100 54.78 0.0064 Cell Down 

GO:0005874 microtubule 76 8 2.8 0.0065 Cell Down 

GO:0016282 eukaryotic 43S preinitiation complex 11 3 0.41 0.0066 Cell Down 

GO:0005840 ribosome 114 34 4.21 1.20E-22 Cell Down 

cellular process 

(GO:0009987) 

GO:0006457 protein folding 30 6 1.23 0.0011 Bio Down 

GO:0060271 cilium assembly 15 4 0.61 0.0026 Bio Down 

GO:0006879 cellular iron ion homeostasis 8 3 0.33 0.0032 Bio Down 

GO:0060285 cilium-dependent cell motility 4 2 0.16 0.0094 Bio Down 

localization 

(GO:0051179) 
GO:0006826 iron ion transport 7 3 0.29 0.0021 Bio Down 

metabolic process 

(GO:0008152) 

GO:0006412 translation 70 13 2.86 3.10E-06 Bio Down 

GO:0006120 mitochondrial electron transport, NADH 2 2 0.08 0.0017 Bio Down 

GO:0015986 ATP synthesis coupled proton transport 2 2 0.08 0.0017 Bio Down 

GO:0022904 respiratory electron transport chain 9 5 0.37 0.002 Bio Down 

structural molecule 

activity 

(GO:0005198) 

GO:0005200 structural constituent of cytoskeleton 19 5 0.75 0.00069 Mol Down 

GO:0003735 structural constituent of ribosome 20 5 0.79 0.0009 Mol Down 

GO:0003714 transcription corepressor activity 3 2 0.12 0.00457 Mol Down 

transporter activity 

(GO:0005215) 
GO:0015078 proton transmembrane transporter activity 19 5 0.75 0.00069 Mol Down 
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Table 3.4: List of GO terms from enriched genes from high pCO2 and ambient model (model 3) for day 

22 non-attached individuals. Up regulated GO terms indicated, all other enriched genes regardless of 

direction of expression are summarized in Table S3.3. GO terms that were also seen in the settlement 

model are specified, all others were unique to non-attached individuals.  

 

GO.ID Term Ann. Sign. Exp. Fisher Test Shared Reg. 

GO:0007018 microtubule-based movement 73 41 24.94 8.00E-05 Bio Unique S3 

GO:0008853 exodeoxyribonuclease III activity 97 64 28.62 8.20E-14 Mol Unique S3 

GO:0005524 ATP binding 665 258 196.22 4.00E-08 Mol Unique S3 

GO:0008569 ATP-dependent microtubule motor activity 24 17 7.08 3.30E-05 Mol Unique S3 

GO:0005085 guanyl-nucleotide exchange factor activity 24 17 7.08 3.30E-05 Mol Unique S3 

GO:0003723 RNA binding 200 85 59.01 5.00E-05 Mol Settlement Up 

GO:0003964 RNA-directed DNA polymerase activity 90 44 26.56 7.70E-05 Mol Unique S3 

GO:0003779 actin binding 57 30 16.82 0.0002 Mol Unique S3 

GO:0003724 RNA helicase activity 61 30 18 0.00091 Mol Settlement Up 

GO:0005737 cytoplasm 848 310 261.21 5.90E-05 Cell Unique S3 

GO:0005856 cytoskeleton 237 115 73 8.90E-05 Cell Unique Up 

GO:0005840 ribosome 114 53 35.12 0.00028 Cell Settlement Up 

GO:0016459 myosin complex 13 10 4 0.00081 Cell Unique S3 
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CHAPTER 4 – METHODS TO ASSESS VULNERABILITY AND ADAPTIVE POTENTIAL OF 

UNDERSTUDIED ORGANISMS TO OCEAN ACIDIFICATION AND HYPOXIA: ESTIMATING 

HERITABILITY OF VARIATION IN RESPIRATION RATES IN HALIOTIS RUFESCENS 

 
Andrea R. Burton, Hannah Gossner, Francis Chan 

 

Abstract 
 Coastal upwelling along the US West Coast plays a vital role in coastal ecosystems by 

suppling nutrient-rich waters to the surface. However, upwelling also brings acidified and hypoxic 

seawater that can negatively impact calcifying organisms. Stressful upwelling conditions are projected 

to increase in severity as carbon emissions are predicted to lead to further ocean acidification (OA) 

along with more frequent hypoxic zones. These combined stressors (OA and hypoxia, OAH) are not 

mutually exclusive in the California Current Large Marine Ecosystem (CCLME) yet are often studied 

separately. In addition, the impacts of OAH have only been studied in a select few taxa, leaving gaps in 

our knowledge of how OAH will influence several economically and ecologically important species. 

The adaptive potential of such species to select for traits tolerant of OAH can be examined through 

estimating heritability. Expanding the work of Gossner et al. (2018), we estimate the heritability of 

respiration rates to infer traits related to metabolic processes in different OAH treatments, as metabolic 

processes are tightly coupled with respiration rates. Using the red abalone, H. rufescens, as a model for 

other understudied calcifying organisms, we measure respiration rates to understand metabolic 

responses to four different OAH scenarios: pre-industrial, baseline upwelling, contemporary upwelling, 

and distant future upwelling conditions. Results from Gossner et al. (2018) indicated that the tolerance 

threshold to OAH has already been reached in current populations, as respiration rates were similar 

across all current and future upwelling scenarios. Variation in respiration rates and genotyping of the 

same individuals were then used to estimate narrow-sense heritability (h2). We found that individuals 

of H. rufescens bred from an aquaculture setting can have h2 of respiration rate as high as 0.24 under 

contemporary upwelling, which suggests they have the potential to respond to selective pressure from 

certain OAH conditions. However, heritability estimates were close to zero under OAH scenarios 

projected for the distant future. Our study introduces methods and considerations for studying OAH in 

understudied species which can be transferable to other understudied organisms. We also discuss what 

steps should be considered when trying to estimate heritability in other understudied organisms that 

may lack resources such as a genome assembly and features.   

 
Introduction 

 Red abalone, Haliotis rufescens, are motile benthic molluscs found from southern Oregon to 

Baja California (Estes, Lindberg and Wray, 2005). Individuals of H. rufescens are both economically 

important to the United States, for being a source of food for humans, as well as culturally iconic 

species to the West Coast (Leighton, 2000; Field, 2020). Shellfish aquaculture, including abalone 

farming, is a sustainable alternative to terrestrial animal protein (Gentry et al., 2017; Froehlich et al., 
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2018). In California, recreational harvest of fish and shellfish generates an estimated $230M-$610 in 

direct expenditures each year (Pendleton and Rooke, 2006). Abalone were once abundant, but after 

widespread population collapses due to overharvesting, most species are protected by law and no 

longer harvested (Rogers-Bennett et al., 2000; Rogers-Bennett et al., 2004). The species H. rufescens 

are now the last remaining abalone species with commercial viability in the U.S. West Coast through 

commercial aquaculture (Reid et al., 2016; Karpov et al., 2000). 

In order to generate viable adults of H. rufescens, commercial production has focused on 

increasing larval and juvenile cultures (Utting and Spencer, 1997). These early life stages can be 

particularly impacted by increased acidity due to ocean acidification (OA) (Kurihara, 2008; Byrne et 

al., 2011; Barton et al., 2012; Griffith and Gobler, 2017), leading to uncertainties as to how OA will 

affect shellfish production (Ellis et al. 2017). The impacts of hypoxia are less examined, but not 

mutually exclusive with OA. Due to upwelling brought on from the California Current Large Marine 

Ecosystem (CCLME), coastal organisms are readily exposed to both acidified and hypoxic conditions 

(OAH) during summer months (Chan et al., 2008; Somero et al., 2016; Feely et al., 2018), which can 

also impact aquaculture facilities with commercial water intake systems (Booth et al., 2012). Low 

oxygen can trigger stressful responses in organisms, resulting in reduced ATP production and putting 

strain on metabolic functions, often resulting in high mortalities (Guppy and Withers, 1999). Both 

veliger and juveniles stages are negatively impacted by high pCO2 (Zippay and Hofmann, 2010; 

Gazeau et al., 2013). For example, prolonged exposure to reduced pH 7.5 results in reduced growth 

rates in juveniles (Kim, Barry and Micheli, 2013), which would be highly detrimental to wild and 

cultured stocks.  

While most studies examine the effects of hypoxia and pH independently, few studies have 

examined the potential synergistic effects of OAH. Due to OA and hypoxic conditions being 

intrinsically linked in the CCLME upwelling system (Chan et al., 2017), decoupling these processes 

does not reflect how future climate scenarios will impact marine organisms. Vulnerability and 

tolerance to OAH conditions may be assessed through metabolic response. Energy provisions can be 

limited by the availability of O2 (Brett, 1971; Pörtner and Farrell, 2008), along with energetic demands 

of maintaining internal acid-base balance in high pCO2 conditions (Orr et al., 2005; Kroeker et al., 

2013). Acidified conditions along with reduced oxygen concentrations stimulate constant internal 

adjustments to counteract these conditions (Fabry et al., 2008; Penn et al., 2018). Mechanisms for 

correcting these imbalances can be energetically expensive (Burnett, 1997; Pörtner and Farrell, 2008), 

which can be reflected in respiration rates (Deutsch et al., 2015; Deutsch, Penn and Seibel, 2020).  

In particular, calcifying organisms are of concern as OA reduces calcification of their shells, 

growth, and survival (Kroeker et al., 2010). The species H. rufescens is among the many calcifying 

organisms with gaps in our knowledge concerning OAH effects. Currently, our understanding of the 

impacts of OAH is restricted to a small handful of taxa. Further, gaps in our current knowledge make it 

difficult to determine which species are more vulnerable than others as climate change stressors 
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progress. Quick and simple mechanisms for assessing the adaptive potential of understudied organisms 

is of interest to policy makers and conservation efforts. By utilizing recent SNP-based genotyping 

methods to evaluate adaptive capacity, we estimate heritability of respiration rates in different OAH 

conditions and discuss caveats and considerations when applying similar methods to other 

understudied organisms.  

Using respiration rates as a proxy for metabolic rates, Gossner et al. (2018) assessed the 

vulnerability or resilience of the species H. rufescens to the combined stressors of OAH. Four OAH 

upwelling scenarios were selected based on pre-industrial, baseline, contemporary, and distant future 

OAH conditions. On average, individuals of H. rufescens exhibited reduced metabolic performance for 

all current and future upwelling scenarios in comparison to pre-industrial OAH conditions (Gossner, 

2018). In addition, there was no difference in metabolic rates among the three current and future 

upwelling conditions. Results from this study suggest the physiological threshold for OAH tolerance 

has already been reached and that the populations have little metabolic plasticity as OAH conditions 

worsen. However, Gossner et al. (2018) observed wide variation in responses among individuals. If 

such phenotypic variation is associated with genetic variation, these populations of H. rufescens may 

be able to respond to selection from OAH changes. Further, northern Californian populations 

demonstrate a range of responses to shifts in pH and oxygen concentrations, suggesting their harbor 

genetic variation for survival and growth under OAH (Kim et al. 2013). In addition, wild populations 

frequently exposed to strong upwelling were found to be more tolerant to high pCO2 treatments than 

captive-raised populations that were not reared in frequent upwelling conditions (Swezey et al., 2020). 

Together, these studies suggest that the species H. rufescens possess genetic variation that may aid in 

adaptation to OAH, but none have measured this potential.  

In this study, we aim to expand on Gossner’s et al. (2018) work to examine the vulnerability of the 

species H. rufescens by assessing the adaptive capacity of metabolic processes in the same four OAH 

scenarios. In this chapter, we develop a simplified method to examine the adaptive potential of 

individuals of H. rufescens by quantifying genetic variation and to test whether this variation can 

explain some of the respiration rate variation observed by Gossner et al. (2018). Adaptation requires 

genetic variation for selection to act upon. Phenotypic variation from respiration rates measured by 

Gossner et al. (2018) may be driven in part by non-genetic factors including environmental history, and 

in part by genetic factors. Heritability of a quantitative trait, such as respiration rate, is defined as the 

proportion of the phenotypic variation (VP) in a trait that can be explained by additive genetic variation 

(VA); formally this is known as narrow-sense heritability: h2 = VA/VP (Falconer and Mackay, 1996). 

Estimations of heritability have been used to predict how natural populations may undergo 

evolutionary change in a trait (Mousseau and Roff, 1987; Falconer and Mackay, 1996; Thomas, 2005; 

Bairos‐Novak et al., 2021). In this study, we measure H. rufescenses’ adaptive potential in future OAH 

by estimating heritability of respiration rates in different OAH conditions. In addition, we discuss 
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considerations needed when replicating these methods when assessing vulnerability of understudied 

marine organisms to future OAH scenarios.  

Although heritability has long been utilized for agricultural purposes, its application to natural 

populations in which relatedness is often unknown has had mixed success due to variation and 

uncertainty with how to calculate genetic relatedness. Genetic relatedness can be correlated with 

phenotypic similarity, enabling the estimation of heritability (Falconer and Mackay, 1996). Several 

estimators for relatedness have been developed, aiming to address variation and noise in datasets such 

as levels of inbreeding, outbreeding, and admixture within study populations (Queller and Goodnight, 

1989; Li, Weeks and Chakravarti, 1993; Ritland, 1996; Lynch and Ritland, 1999; Wang, 2002, 2007; 

Milligan, 2003). The performance of each relatedness estimator depends on characteristics of the data 

which are difficult to predict prior to estimating relatedness (Van De Casteele et al. 2001; Wang, 2002; 

Csilléry et al., 2006). Relevant characteristics of the data include sample size (Yang et al., 2015), the 

number of loci (Yang et al., 2010), as well as with population genetic parameters such as such as minor 

allele frequencies (MAF) or linkage disequilibrium (LD) (Speed et al., 2012, 2017). MAF is the 

frequency in which the second most common allele occurs in a population. MAF and LD can be 

biased, with both higher frequencies alleles (Speed et al., 2017) and regions of strong LD tending to 

overestimate heritability. The accuracy of heritability estimates can be improved when considering 

such characteristics but may be limiting in non-model organisms. For instance, the species H. rufescens 

has a reference genome that lacks linkage groups (Masonbrink et al., 2019) that removes methods of 

stratification of loci based on linkage disequilibrium, a genomic characteristic that may improve 

heritability estimates (Evans et al., 2018).  

In this chapter, we estimate heritability of respiration rates under four different OAH conditions. 

Seawater was manipulated to reflect pCO2 and oxygen concentrations in pre-industrial, baseline 

upwelling, contemporary upwelling, and distant future upwelling conditions. We examine different 

dataset parameters and different relatedness estimators for calculating heritability, with the additional 

aim of understanding the feasibility of using these methods given the limitations of non-model 

organisms. Heritability estimates were conducted on metabolic response to OAH in individuals of H. 

rufescens. Further, we discuss the viability and accuracy of methods used in this study to other non-

model organisms.  

 

Materials and Methods 
Measuring metabolic rates 

 Respiration rate experiments were carried out by Hannah Gossner for her Masters of Science 

work, and was completed as described in Gossner (2018). Here, we overview these methods. 

Approximately 250 Juvenile H. rufescens, ranging from 10-15 mm, were shipped overnight from Moss 

Landing Research Lab, CA, in an insulated box containing ice packs. These juveniles were bred from 

crosses of twelve females from the Ab Farm (Cayucos, CA) and six males from American Abalone 
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(Davenport, CA), likely making them distantly related. Upon arrival, individuals of H. rufescens were 

split into two shellfish bags (125 juveniles each) and fed on Palmaria mollis. H. rufescenses’ health 

and food availability were monitored daily while being held in an outdoor flow-through tanks at 

Hatfield Marine Science Center in Newport, OR. Respiration rates were measured for 128 juveniles 

randomly selected individuals to be exposed to one of the four OAH conditions during exposure and 

allowed to recover before measuring respiration rates again.   

Approximately 28 individuals were divided into one of the four OAH treatments: pre-

industrial (pH = 8.17, 297 !mol/L, baseline upwelling (pH = 7.56, 75 !mol/L), contemporary 

upwelling (pH = 7.50, 40	!mol/L), and distant future upwelling (pH = 7.27, 20 !mol/L) (Table 4.1). 

Baseline upwelling is present day OAH conditions in which seawater is already seen pH reduced by 

0.12, and aragonite saturation reduced 0.5 (Gruber et al., 2012; Harris, DeGrandpre and Hales, 2013). 

Contemporary upwelling represents both modern seawater conditions at a deeper depth or near-future 

conditions. Distant future represents the worst-case scenario of pH, aragonite saturation, and oxygen 

concentrations for the year 2100 (Feely et al., 2004; Chan et al., 2017). Seawater was collected from a 

flow-through system at the Hatfield Marine Science Center, where it was filtered (400 !m). Seawater 

was manipulated by first removing dissolved gasses using nitrogen gas and bubbling with carbon 

dioxide until the desired pH was met. Oxygen was added through agitation or diffusion. Dissolved 

inorganic carbon and alkalinity were back calculated using pH and temperature on CO2Sys (CO2SYS 

Program, version 2.3, Ernie Lewis) (Gray et al. 2011). Total alkalinity was assumed to be 2250 

µM/kgSW and salinity to be 33.5 psu, while temperature was targeted at 8°C. Manipulated seawater 

was added to 15-mL gas-tight ground-glass vials. Oxygen consumption was measured for 35 to 44 

minutes for each individual using Fibox 3 Oxygen Meter and corresponding oxygen-sensitive optode 

sensor dots (PreSens Precision Sensing, Regensburg, Germany) and acquired with Fibox 3 for PSt3 

software (version 6.02). Respiration rates were measured at two different times, first while juveniles 

were in their pH treatments (exposure treatment), then again after there were given time to recover 

(recovered treatment). Respiration rates were not recorded for 11 individuals and were not used for 

sequent analyses. Following the respiration in each OAH experiment, juveniles were stored in ethanol 

until needed for DNA extractions.  

To test whether respiration rates were impacted by OAH treatments, a series of ANOVAs 

were performed. A Shapiro-Wilk test showed that untransformed rate values had unequal variance and 

deviated from normality (p = 0.04). Respiration rates were hence log-transformed prior to ANOVA 

tests. A 2-way ANOVA examined the effect of pH treatment and date of experiment to confirm that 

day of experiment did not affect respiration rates. Date had no effect in the exposure treatment (F3,104 = 

0.332, P = 0.97) or in the recovery treatment (F3,104 = 0.25, P = 0.61) (Table 4.2). Therefore, date was 

not used as a factor for any analyses downstream.  
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Multilocus SNP genotyping 

 To estimate heritability of metabolic rates, we first conducted multilocus SNP genotyping for 

the 117 samples in which respiration rates were measured. Tissue samples from the foot of the juvenile 

were cut away. DNA from these tissue samples were extracted using the Omega bio-tek E.Z.N.A. 

Tissue D Kit (Omega Bio-tek, Norcross, GA). Sequencing libraries was prepared using the 2bRAD 

protocol for genotyping SNPS (Wang et al. 2012) using the AlfI enzyme. A reduced tag representation 

method was used by selecting adaptors with a “NR” overhang to target a fourth of the AlfI sites (Wang 

et al. 2012). Samples were pooled in two groups of 64 at equimolar amounts and each pool was 

sequenced on a lane of HiSeq 3000 as 50-bp single reads at Oregon State University’s Center for 

Genome Research and Biocomputing (now the Center for Quantitative Life Sciences).  

 Sequenced reads were processed using publicly available scripts (https://github.com/Eli-

Meyer/2brad_utilities/). First, adaptors were trimmed and low-quality reads with a phred score less 

than 30 were removed. Approximately 1.7 billion reads were sequenced (~13.5 million reads per 

sample), with 1.6 billion reads remaining after filtering (~13 million reads per sample). Cleaned reads 

were mapped to a reference H. rufescens species genome (Masonbrink et al. 2019) which was indexed 

using BWA (Li & Durbin 2010) and bowtie (Langmead et al. 2009). Reads were then mapped using 

SHRiMP (Rumble et al. 2009), reporting the top 3 maximum hits per read. Roughly 18.8 million reads 

successfully mapped (~145 thousand reads per sample).  

Genotypes were called based on nucleotide frequencies at each position with permissive 

threshold of greater than or equal to 5 times coverage. This was done by calling loci homozygous if the 

minor allele was present at less than 1%, heterozygous if present at more than 25%, and undetermined 

at intermediate frequencies (Wang et al. 2012). Addition filtering was done to eliminate samples with 

fewer than 5,000 missing loci, which removed 7 samples. Loci that were genotyped in 10 or fewer 

samples were also removed. Lastly, only bi-allelic SNPs were retained. The final dataset contained 110 

individuals with 343 loci for downstream analyses.  

 

Estimating relatedness and heritability 

 To estimate heritability of variation in respiration rate, we first estimated genetic relatedness 

between each individual. Using the 343 SNP loci, we inferred genetic relatedness among samples 

using the package ‘related’ (Pew et al., 2015). To determine which estimator of relatedness worked 

best with this dataset along with determining how related our samples were, we compared six different 

estimators available through the 'related' package (Frasier 2018): Lynch & Li (LL), Lynch & Ritland 

(LR), Ritland (R), Wang (W), Queller (Q), and Dyad (D) (Pew et al. 2015). Using the ‘FAMILYSIM’ 

function in the ‘related’ package (Pew et al., 2015), allele frequency data was used to generate 100 

iterations of simulated pairs of individuals within the following relatedness groups: parent-offspring, 

full-sibling, half-sibling, and unrelated. Results from relatedness simulations indicated that Wang (W) 

and Lynch and Li (LL) had a means closest to the true value (0.5 full sibs, 0.25 half sibs, 0.5 parent to 
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offspring, and 0 for unrelated), with relatedness estimates falling within 0.1% of the true values for 

three of the four relatedness groups (Figure 4.1). The abalone individuals we assayed were received 

from a farm where inbreeding is actively avoided by selecting female parents from one farm and males 

from another. The individual samples were confirmed to be unrelated as the simulation for unrelated 

relatedness group having narrow confidence intervals, indicating simulated estimates for unrelated 

pairs had the least error (Figure 4.1D). The same function ‘COANCESTRY” was used to calculated 

95% confidence intervals. Each estimator has different ranges for relatedness estimations (Pew et al., 

2015), all of which fall outside of the 0 to 1 range in order to add more weight towards unrelated 

individuals (below 0) (Queller and Goodnight, 1989; Ritland, 1996; Lynch and Ritland, 1999) and for 

closely related individuals (above 1) (Milligan, 2003).  

After selecting W and LL methods, a genetic relatedness matrix was derived from the 

genotypes using each of these relatedness estimators and these used for all heritability calculations 

(Queller & Goodnight 1989, Tavalire et al. 2018). Prior to estimating heritability (h2), a principal 

component analysis (PCA) including all genotypes was run using the 'prcomp' function in R to 

examine whether genetic stratification existed in the dataset, which could introduce biases to the 

analysis. Results from the PCA showed no clear stratification, and that PC1 explained 31% of the 

variance (Figure S4.1). Variation in respiration rates during exposure and after recovering was 

partitioned into genetic and non-genetic components using a restricted maximum likelihood model 

(REML) using the R package ‘regress’ (Clifford, McCullagh and Clifford, 2014), with PC1 used as a 

fixed effect due to population structure being a function of genetic ancestry and is the same for all 

samples (Price et al., 2010). A REML model was performed with respiration rates from each treatment 

level in both exposure and recovered experiments. We then estimated narrow-sense heritability (h2) 

associated with standard errors based on phenotypic variation remaining after accounting for known 

sources of variance using the h2G function in ‘gap’ (Zhao, 2007).  

 

Challenges and solutions for h2 estimation 

Estimates of h2 for the pre-industrial and contemporary treatments were not obtained because 

the models did not find a variance coefficient (Table 4.3). The variance coefficient is calculated from 

the variance matrices derived from the related matrix and should be “positive definite”. However, if the 

variance matrix is largely not positive definite, the coefficient cannot be calculated (Yang et al., 2010). 

Yang et al. (2010) explains that having a non-positive definite variance matrix may be attributed to 

having small number of loci (e.g. less than 1000) or having a data set where individuals are largely 

unrelated. For our data set, we have less than 1000 loci and unrelated individuals (Table S4.1). We 

examined how incrementally incorporating these steps impacts the ability to estimate relatedness and 

heritability and their uncertainty. 

Methods for filtering the dataset so that it may be “positive definite” include removing 

samples with high confidence intervals calculated from the relatedness matrix, removing loci with 
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minor allele frequencies (MAF) less than 0.05, and stratifying loci based on MAF (Speed et al., 2012; 

Evans et al., 2018). First, for each genetic relatedness matrix (W and LL), we compared 95% 

confidence intervals among individuals. Individuals that were in more than two paired comparisons in 

which confidence intervals (CI) ranges (upper limit – lower limit) were greater than 5 were removed 

(Table S4.2). The value of 5 was selected as it related to an ideal number of individuals for removal as 

4 resulted in hundreds of pairs with 32 individuals being removed, while 6 was too stringent with only 

5 individuals being removed. We next filtered loci based on minor allele frequency (MAF), since those 

with very low values are known to bias relatedness estimates (Speed et al., 2012).  We used vcftools 

(Danecek et al. 2011) to remove loci with MAF < 0.05 (four were removed from the dataset), and then 

re-calculated LL and W estimators. Finally, the remaining loci (> 0.05) were binned based on their 

MAF across the following bins: 0.05-0.10, 0.10-0.20, 0.20-0.30, 0.30-0.40, and 0.40-0.50. LL and WW 

relatedness estimators were run and heritability estimates re-calculated. A fourth recommend step is to 

incorporate LD in the relatedness models (Evans et al., 2018). Unfortunately, the current reference 

genome for the species H. rufescens does not contain linkage groups or chromosomal information 

(Masonbrink et al. 2019), and it is too fragmented. For this reason, the influence of LD on heritability 

estimates was not assessed.  

 

Results 
During exposure to the different experimental OAH levels, respiration rates of H. rufescens 

individuals in the pre-industrial level were 2.5X higher than in the other three levels (Figure 4.2) (F3,96 

= 36.615, p = 8.25e-25, Tukey HSD, p = 0.022-0.046). Individuals of H. rufescens in the pre-industrial 

treatment had respiration rates ranging from 0 to 285 !mol O2/ind/day, while the other three upwelling 

scenarios 2 to 102 !mol O2/ind/day.  Respiration rates sharply declined in the baseline upwelling 

treatment, which had similar respiration rates to the contemporary and future upwelling conditions 

(Tukey HSD, p = 0.997-0.999), with no pattern or shifts in respiration rate as exposure severity 

increased. During the recovery experiment, respiration rates did not differ significantly among 

treatment conditions, and ranged from 0 to 276 !mol O2 g-1 d-1 (F3,97 = 0.199, p = 0.897).  

As already mentioned, the Lynch and Li (LL) and Wang (W) relatedness estimators 

performed best among the six relatedness estimators used for this study (Figure 4.1), and readily 

produced estimates of h2 under baseline and future upwelling conditions in both experiments (Table 

4.4). Further analyses involved testing filtering steps to permit estimations under pre-industrial and 

contemporary conditions, and to improve calculations overall. First, removal of 8 individuals with 

highly overlapping CI for relatedness values (102 remaining) improved the model fits and allowed for 

calculation of h2 for respiration rate in the contemporary upwelling in the exposure experiment (Table 

4.4). However, relatedness matrices remained non-positive definite for the pre-industrial treatments, 

and hence h2 was still not obtained. Removal of MAF < 0.05 improved heritability estimates of 

contemporary OAH exposure, however, did not improve heritability estimates in pre-industrial 
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exposure. MAF < 0.05 likely made some relatedness estimates less than zero, making the relatedness 

matrix non-positive definite. Binning MAF resulted in all but one bin (MAF 40-50%) not being able to 

estimate heritability (Table S4.3). Binning the loci based on MAF reduced the number of loci per bin 

ranging from  33 two 172 (Table S4.3), reducing the power for estimating relatedness (Park et al., 

2011). For this reason, we decided to not include these steps in the final analyses but will be discussed 

when assessing the limitations of this data set when doing this type of analyses.  

After removing samples with high confidence intervals and MAF less than 0.05, LL and W 

produced similar heritability estimates with differences in estimates ranging from 0.0003 to 0.1012 

(Table 4.4). For both estimators, h2 increased slightly with increasing OAH stress conditions during 

exposure, but then decreased in the future OAH treatment (Table 4.4, Figure 4.3a). The highest h2 

estimates were in the contemporary upwelling scenario, in which h2 was 0.23 (± 0.29) and 0.25 

(±0.33) for W and LL, respectively. During recovery, h2 were all low, with all but the baseline 

upwelling condition falling below zero (Table 4.4, Figure 4.3b). Overall, uncertainty in estimation of 

h2 remained high, as illustrated by wider error bars (Figure 4.3). 

 

Discussion 
Here, we report that respiration rates are lower in the decreased pH and oxygen concentration, 

suggesting that metabolic demand is reduced in H. rufescens individuals. Decreased respiration rates 

have been reported to be correlated with reduced metabolic processes in response to higher levels of 

stress to OAH (Deutsch et al., 2015; Deutsch et al. 2020). Respiration rates were highest in the 

preindustrial OAH treatment, but sharply declined and stayed the same in the subsequent treatments. 

The lack of continued respiration rate decline as OAH condition worsened suggests individuals in the 

baseline upwelling experienced the same level of stress response to those in the distant future 

upwelling (Gossner, 2018). Individuals in acidified and hypoxic conditions require metabolic processes 

to correct for imbalances that are energetically expensive (Burnett 1997, Pörtner 2008, Gruber et al. 

2012). Increased stress response to the three future OAH conditions resulted in metabolic depression, 

but this metabolic depression plateaus with the smallest shift in seawater chemistry that was used in 

this study. These results suggest that the physiological threshold for OAH stress was reached with the 

least severe upwelling conditions (Gossner, 2018). Similarity of respiration rates following all the 

OAH exposures could mean that those exposed to the different upwelling scenarios fully recovered 

after 30 minutes in ambient seawater conditions. Individuals from all OAH conditions were able to 

reacclimate back to benign conditions relatively quickly.  

 

Heritability Estimates 

 With roughly 120 species produced in North American aquacultures, of which 50 are 

calcifying organisms, there is a need to understand how these organisms will be impacted by future 

climate change projections (Garibalid, 1996; FAO, 2010). Resource managers and policymakers in 
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Oregon have expressed the need to understand the risks of OAH in a variety of economically and 

ecologically important species to predict management efforts towards toward these species. This study 

provides the first quantitative estimates for heritability of variation in respiration rates in the species H. 

rufescens. The highest heritability estimate for metabolic stress was seen in individuals exposed to the 

contemporary OAH treatment, with h2 ~0.24. This level of heritability may allow individuals of H. 

rufescens to respond to selection for traits associated with metabolic processes, at least to some near 

future OAH scenarios. Notably, heritability estimates for respiration rates were below zero in the most 

stressful OAH condition. Distant future upwelling conditions appear to be too severe, and individuals 

exposed to these treatments lacked quantitative genetic variation that could explain their respiration 

rates. This may indicate limited adaptive potential to the projected levels of OAH in more distant time 

frames. During recovery post OAH stress, no level of OAH were associated with measurable 

heritability of respiration rates, suggesting that mechanisms for reacclimating to ambient conditions are 

do not have a quantitative genetic component, at least in the samples used. 

The physiological threshold to OAH occurred prior to any future upwelling scenarios. 

However, we see that H. rufescenses’ capability to acclimate to normal seawater conditions occurs 

rapidly once future upwelling conditions are removed. In addition, we conclude from our heritability 

estimates that the species H. rufescens has the capacity to adapt to all but the worst-case future 

upwelling scenarios predicted to occur by 2100. In addition, we expected heritability estimates to 

decline gradually, rather we observed sudden declines from contemporary upwelling to the next. 

However, heritability estimates had high error that overlapped between OAH treatments, suggesting 

that the sudden decline in heritability estimates may be an artifact of the data. Assuming the sudden 

reduction of heritability estimates in the distant future OAH condition is true, this suggests that these 

conditions are too severe for individuals to mitigate these conditions through metabolic processes. 

While current aquaculture H. rufescens individuals may not adapt to future upwelling conditions, we 

observe they have metabolic traits for selection in current and closer future projections. Selection of 

these traits may shift metabolic processes so that individuals of H. rufescens may be more tolerant, 

with future populations have higher adaptive potential over generations. Together, we find that 

individuals of H. rufescens are vulnerable to future OAH conditions but have the capacity to select for 

metabolic traits to be more tolerant to all but distant future OAH conditions.   

To date, this is the first study to examine the combined impacts of OAH on H. rufescens 

species. Previous work on OA allude to heritability potential of increased survival and growth within 

these conditions (Kim et al. 2013; Swezey et al., 2020), but none have examined hypoxia. For instance, 

F2-generations of H. rufescens individuals had reduced survival and increased lipid reserves under high 

pCO2 conditions, suggesting larval lipid metabolism is potentially heritable (Swezey et al., 2020). 

However, heritability estimates of growth or metabolic responses in hypoxic conditions has been 

limited to fish (Anttila et al., 2013; Ferrari et al., 2016) and some marine invertebrates (Dam, 2013; 

Zhang et al., 2017). Fewer studies have examined the combined effects of OAH (Dam, 2013).  
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 This study, as far as we know, is the first to address the impacts of OAH and the adaptive 

potential of H. rufescens individuals to predicted OAH conditions. Estimating variation in respiration 

rate observed with genetic variation to estimate heritability provides insight into metabolic response in 

current and future OAH scenarios. This approach could be a powerful tool in understanding how the 

species H. rufescens and other understudied species will fare under future OAH conditions. However, 

there are limitations of estimating heritability in non-model taxa, such as H. rufescens individuals, that 

stem from lower availability of genetic resources and difficulty in controlling and estimating genetic 

relatedness. Other population-level factors and limitations also impact the reliability of heritability 

estimates. For example, individuals used for this study were obtained from a breeding program, and 

thus may not reflect individuals of H. rufescens in natural populations. Inbreeding was systematically 

avoided in these populations, making accuracy of heritability estimates more uncertain because of the 

reduced range of genetic relationships across which to model. In addition, heritability estimates are 

population-specific and vary both based on standing genetic variance within that population and 

environmental heterogeneity to which that population is exposed (Visscher et al. 2008). Therefore, our 

estimates may only represent populations found in the aquaculture farms from where our samples were 

obtained. Heritability can also differ between life stages; for instance, juveniles of a coral species had 

lower heritability of bleaching and growth than larvae and adults (Bairos-Novak et al. 2021). In this 

study, we only estimated heritability in juveniles, which may show very different sensitivity to OAH 

variation than earlier life stages (Hofmann et al., 2010). Similar methods from this study should be 

utilized on other life stages to provide a broader picture of the adaptive potential for the species as a 

whole, especially for early larval developmental stages that are more vulnerable to OA (Kroeker et al., 

2010). Early larval stages are readily impacted by environmental factors as they are undergoing variety 

of developmental processes that are energetically taxing. Metabolic demands during larval stages are 

high but may have a variable response to OAH. If variation in metabolic response is measured, this 

could provide heritability estimates of metabolic processes for this life stage. A thorough 

understanding of how this species will fare with future OAH will require follow-up studies of multiple 

natural populations at different life stages. Finally, estimates of heritability would greatly benefit from 

linkage group information (Speed et al., 2012, 2017). The only reference genome sequence for the 

species H. rufescens is ~1.5 Gb of the estimated 1.8 GB genome (Gallardo-Escárate and Del Río-

Portilla, 2007) includes around 8,000 scaffolds with no chromosomal or linkage group information 

(Masonbrink et al., 2019). For this reason, improving heritability estimates through stratification of LD 

and MAF were limited in this species. We discuss these limitations and how they may apply to other 

understudied organisms in the next section. 

 

Considerations when estimating heritability in understudied species 

Despite the limitations discussed above, we identified a set of data filtering steps that 

ameliorate calculations of genetic relatedness prior to obtaining h2. Consideration of which population 
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to sample along with the number of individuals needs to be taken. Breeding programs often prioritize 

outbreeding. In this study, we see the biggest limitation for estimating heritability was sample size. 

While there are other studies that have fewer individuals (e.g. Dziedzic et al. 2019 n = 43, Alcapán et 

al. 2007 n = 95), limitations in our dataset arose when estimating heritability in unrelated individuals. 

When assessing the adaptive potential of a species to environmental conditions with unknown 

relatedness, large sample sizes of individuals across multiple populations will increase representation 

of the species. When estimating heritability among unrelated individuals as we did, around 3,000 

samples are required to decrease standard errors to below 0.1 (Visscher et al., 2014). When standard 

error is greater than 0.1, the 95% confidence interval will cover the whole parameter space, and cannot 

produce meaningful estimates (Yang et al., 2015) as seen in our dataset (Figure 4.3). Breeding 

programs may have similar issues when estimating relatedness in breeding programs that are largely 

unrelated. Either 3,000 individuals need to be sampled (Yang et al., 2015), or selective breeding 

schemes with some related individuals will improve statistical power for estimating heritability.  

In addition, a small data set yielded a limited number of markers to estimate relatedness. 

Fewer markers prevented MAF binning analyses that has been shown to increase the accuracy of 

heritability estimates (Evans et al., 2018). Heritability varies with MAF, with performance of models 

improving by change how genotypes are scaled based on their MAF (Speed et al., 2017). Park et al. 

(2011) found that the contribution of alleles to genetic variance was highest in 0.3-0.4 or 0.4-0.5 while 

allele-frequencies between 0.05-0.1 and 0.1-0.2 explained little of the genetic variance. A power-

adjusted analysis of the impact of MAF indicated that alleles that are less common likely have larger 

effects of heritability estimates while explaining little of the variance. This bias in MAF is impacted by 

the number of SNPs and their collective contribution to genetic variance (Park et al., 2011). 

Performance of models estimating heritability improved when genotypes were scaled based on MAF 

(Park et al., 2011; Speed et al., 2017). In our study, we attempted to examine the influence MAF by 

binning loci in 10% increments. However, due to the limited number of loci, the power of our analyses 

decreased substantially, resulting in standard errors so large that the estimators for heritability could 

not be performed for many of our models. Accounting for MAF while estimating heritability could 

have aided in more reliable estimates, but we were limited by sample size and limitations in our data 

set. Power analyses suggests that a relatively large number of markers (~2,000-5,000) must be 

genotyped for heritability estimates (Hu and Yang, 2014). Mechanisms for increasing markers 

sequenced should be considered, and these include sequencing longer reads (2bRAD is limited to 34-

36 bp) and optimizing bioinformatic parameters for balancing number of loci and genotyping error rate 

(Catchen et al., 2013; O’Leary 2018). 

 

 

 

 



 

 

67 

Conclusion 
Together, measuring respiration rates as a proxy for metabolic response along with estimating 

the heritability of this trait could be useful for assessing the vulnerability of non-model and 

understudied organisms to different OAH scenarios. Gossner’s et al. (2018) work isolates the 

physiological threshold for metabolic depression, our heritability estimates indicate that these 

physiological responses are related to genetic composition in individuals of H. rufescens. Traits 

relating to these physiological responses can thus drive adaptation given selective pressures from 

OAH. However, considerations for improving our methods for assessing the vulnerability and adaptive 

potential should be addressed. Natural populations should be utilized when addressing questions 

concerning the adaptive potential of a species. In addition, the more representation of these genetic 

pools will more accurately reflect the species, meaning individuals samples should come from a variety 

of populations spanning geographic ranges. Methods of how heritability is estimated should be 

considered, including what population(s) is sampled, the number of individuals and markers being 

targeted, availability of reference genome and genome characteristics, and what model to use to 

estimate heritability.  
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FIGURES AND TABLES 

 

 

Figure 4.1: Box plots comparing relatedness estimators (LL) Lynch & Li, (LR) Lynch & Ritland, (R) 

Ritland, (W) Wang, (Q) Queller, and (D) Dyad, showing related values simulated for A (full), B (half), 

C (Parent-offspring), and D (unrelated). Best performing estimators were selected based on the 

difference of the relatedness estimation from the true relatedness group value (full = 0.50, half = 0.25, 

parent-offspring = 0.50, and unrelated = 0.00), in which relates estimates falling within 0.01 are 

indicated with an asterisk.  
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Figure 4.2: Mean respiration rates with 95% confidence intervals for each OAH treatment in the (A) 

exposure and (B) recovered experiment. 
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Figure 4.3: Heritability (h2) estimates (± standard error) for each pH treatment estimated by Lynch & 

Li (LL) and Wang (W) in the (A) exposure and (B) recovered experiments.  
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Table 4.1: Target values for OAH treatments that were back calculated from the relationship between 

dissolved oxygen (DO) and dissolved inorganic carbon (DIC) with anthropogenic carbon load (Feely et 

al. 2018, Chan et al. 2017, Gossner 2018), with temperature 10°C, salinity 33.5 psu, and total alkalinity 

of 2250 !mol/kgSW.  

 

Treatment pH 
pCO2 

(!atm) 
TCO2 

(!mol/kgSW) 

O2 

(!mol/L) 
ΩCa ΩAr 

Pre-industrial 8.17 285 2036 297 3.60 2.27 

Baseline 7.59 1238 2240 75 1.08 0.68 

Contemporary 7.50 1508 2264 40 0.90 0.57 

Distant Future 7.27 2628 2540 20 0.54 0.34 
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Table 4.2: Results from 2-way ANOVA for OAH treatment and date of experiment on respiration rates 

in exposure and recovered experiment. 

 

Experiment Term DF F-value P-value 

Exposure 

Treatment 3 36.613 8.25e-15 

Date 1 0.332 0.566 

Treatment:Date 3 0.378 0.769 

Recovered 

Treatment 3 0.199 0.897 

Date 1 0.301 0.501 

Treatment:Date 3 0.22 0.882 
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Table 4.3: Restricted maximum likelihood model (REML) used to estimate heritability of desired 

respiration trait for H. rufescens during exposure to OAH and recovered OAH treatment within each 

treatment: pre-industrial, baseline upwelling, contemporary upwelling, and future upwelling. All 

models had respiration rate as the output (y) with PC1 calculated from principal component analyses 

(PCA) of allele frequencies as a fixed effect (Resp rate ~ PC). The number of individuals is shown 

before removal of samples that had high confidence intervals in relatedness estimates and after.  

 

pH treatment Exposure  Recovered  N before N after 

Pre-industrial Pre.Exp ~ PC Pre.Rec ~ PC 28 27 

Baseline upwelling Base.Exp ~PC Base.Rec ~ PC 29 26 

Contemporary upwelling Cont.Exp ~ PC Cont.Rec ~ PC 28 25 

Future upwelling Fut.Exp ~ PC Fut.Rec ~ PC 25 24 

  Total 110 102 
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Table 4.4: Heritability estimated (±standard error) from Lynch & Li (LL) and Wang (W) relatedness 

estimators. Different methods were used to estimating heritability, including before data manipulation 

(No adjustment), after removing samples with high confidence intervals (High CI removal), and 

removing loci with MAF less than 0.05 (MAF < 0.05 removed). Heritability estimates are separated 

based on models seen in Table 4.3. NAs indicate when estimators that were not able to estimate h2 due 

to non-positive definite relatedness matrices. 

 

Method Experiment Model LL W 

No adjustment 

Exposure 

Pre.Exp NA NA 

Base.Exp 0.016 ±	0.261 0.038 ±	0.263 

Cont.Exp NA NA 

Fut.Exp -0.053 ±	0.186 -0.049 ±	0.188 

Recovered 

Pre.Rec NA NA 

Base.Rec 0.100 ±	0.261 0.093 ±	0.261 

Cont.Rec NA NA 

Future.Rec -0.115 ±	0.168 -0.114 ± 0.170 

High CI removal 

Exposure 

Pre.Exp NA NA 

Base.Exp 0.070 ±	0.280 0.090 ±	0.279 

Cont.Exp 0.283 ±	0.192 0.279 ±	0.194 

Fut.Exp 0.052 ±	0.193 0.043 ±	0.200 

Recovered 

Pre.Rec NA NA 

Base.Rec 0.032 ±	0.278 0.020 ±	0.280 

Cont.Rec NA NA 

Future.Rec -0.115 ±	0.174 -0.120 ±	0.166 

MAF < 0.05 

removal 

Exposure 

Pre.Exp -0.083 ± 0.226 -0.143 ±	0.217 

Base.Exp 0.072 ±	0.276 0.082 ±	0.275 

Cont.Exp 0.247 ±	0.331 0.230 ±	0.293 

Fut.Exp 0.051 ±	0.198 0.055 ±	0.198 

Recovered 

Pre.Rec -0.056 ±	0.236 -0.158 ±	0.219 

Base.Rec 0.035 ±	0.274 0.020 ±	0.280 

Cont.Rec -0.105 ±	0.331 -0.108 ±	0.339 

Future.Rec -0.119 ±	0.173 -0.119 ±	0.175 
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CHAPTER 5 – CONCLUSIONS 

 
General Conclusions 

In this dissertation, we investigated how coastal marine invertebrates are impacted by 

environmental stresses and assessed their adaptive potential to stressful conditions associated with 

climate change. Increasing carbon emissions has resulted in shifts in marine systems, including 

increasing temperatures, acidified conditions, and hypoxic zones. These shifts in marine systems have 

created stressful conditions that are predicted to increase in severity of the next few decades. The 

impacts of thermal, ocean acidification (OA), and hypoxic stress has been seen in a variety of taxa, 

leading to concerns how these organisms will adapt as conditions worsen. Although the biological 

impacts of climate stressors have been well studied in a few taxa, gaps in our knowledge concerning 

several local species and specific life stages persist. In addition, the combined effects of OA and 

hypoxia (OAH) has scarcely been examined despite its high prevalence during upwelling seasons 

along the California Current Large Marine Ecosystem (CCLME). Using a variety of genomic 

techniques, we examined the current and future impacts of climate change on three economically or 

ecologically species of concern.   

  

Impacts of climate stressors   
            Population declines due to Sea Star Wasting Syndrome (SSWS) were observed along the North 

American western coastline. Among sea stars decimated by SSWS, Pisaster ochraceus, were impacted 

with little evidence for tolerance. We measured little genetic variation associated with disease status 

between wasting and apparently normal individuals, suggesting that current populations lack genetic 

the basis to tolerate SSWS. Marine diseases such as SSWS are increasing due to rising sea water 

temperatures (Harvell et al. 2002, 2004). Predictions to why marine diseases are more prevalent relate 

to either the pathogens being more successful in warmer environments, host susceptibility under 

thermal stress, or both (Harvell et al. 2004). In either case, our study suggests that P. ochraceus lacks 

genetic composition to tolerate potential pathogen(s). Little genetic makeup for resilience to SSWS 

leaves P. ochraceus vulnerable to SSWS, especially when sea water temperatures become stressful. 

We did not see any similarity between genomic regions with that of previous studies conducted in 

California (Schiebelhut et al. 2018). Lack of similar genomic regions with previous studies suggests 

that sampling individuals across several geographic regions are needed.  

            We observed negative impacts of ocean acidification in Crassostrea gigas and Haliotis 

rufescens. Metamorphosis was lower in C. gigas under high pCO2 conditions, while H. rufescens had 

reduced respiration rates when high pCO2 was coupled with decreased oxygen concentrations. The 

threshold of metabolic processes tolerance to OAH has already been reached in H. rufescens (Gossner 

2018), leaving them vulnerable during upwelling events. Together, these studies reiterate the impacts 
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of OA on calcifying organisms. However, we did not see an impact of pCO2 condition for settlement 

rates or on gene expression in attached spat in C. gigas. Differences in metamorphosis and settlement 

rates underscores how life stages have dissimilar responses to OA and should be examined. 

  

Adaptive potential 

            Genetic variation within a population, whether due to novel mutations or standing variation, is 

one necessary prerequisite for natural selection to result in adaptive change (Bitter et al. 2019). 

Another prerequisite is that some genetic variation is associated with nonrandom differences in fitness. 

In P. ochraceus, we found little genetic variation associated with disease status. No difference between 

the genetic makeup of wasting and apparently normal P. ochraceus suggests that this species is 

susceptible and lacks the genetic makeup aiding in tolerance to SSWS. Meaning there is little to no 

standing genetic variation to be selected upon during a SSWS outbreak. Results from our study 

suggests that P. ochraceus has little potential to adapt to future SSWS outbreaks. This is concerning as 

SSWS and marine diseases are correlated to rising sea water temperatures and are likely to occur in 

higher frequencies. 

            We do see some hope for C. gigas adaptive potential to OA. Proportion of attached spat in C. 

gigas does not appear to be impacted by OA, suggesting this stage in development are more resilient to 

these conditions. Earlier life stages such as metamorphosis are impacted and remain a concern, but 

adaptive potential of these stages was not examined in this dissertation. Having said that, knowing that 

not every life stages is negatively impacted by OA is encouraging as it indicates there are some 

individuals who will persist in acidified conditions. Further, the potential for carry over effects 

(Hettinger et al. 2012) to offspring may drive adaptation of the species (Takahashi 1997). 

The adaptive potential of H. rufescens to OA was also seen when coupled with 

deoxygenation. Narrow-sense heritability measures the ratio of additive genetic variation to phenotypic 

variation for a given trait. Traits with higher heritability estimates are readily influenced by selection, 

which makes h2 a common parameter for assessing the adaptive potential of a species. In H. rufescens, 

we find that metabolic processes are heritable in future upwelling conditions. However, heritability 

estimates power is limited by population size especially when individuals are unrelated as we observed 

from our data set. When utilizing heritability as a parameter for assessing adaptive potential, we 

suggest using larger sample sizes in related amongst unrelated individuals are used. 

            

Conclusion 

The negative impacts of environmental stressors relating to climate change are numerous. In 

this dissertation we see these impacts result in increased susceptibility to disease, delay specific life 

stages during development, and depleting metabolic processes. There are still gaps in the literature 

about how modern-day climate change is impacting a variety of taxa and life stages, along with how 
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projected conditions will impact these taxa. For instance, there is still uncertainty about the severity of 

SSWS outbreaks in P. ochraceus as sea level temperatures continue to rise. With marine diseases 

becoming more prevalent, preemptive measures need to be taken on how to effectively respond to 

disease outbreaks. Establishing a baseline of health of coastal organisms could be informative for 

future studies when outbreaks occur (Gravem et al. 2021). Such measures would be beneficial for other 

stressors such as following upwelling events as conditions increase in severity. There are still many 

taxa and life stages in which we know very little about the impacts of climate change associated 

stressors, such as OA and OAH. C. gigas serves as a great model organism for understanding 

physiological impacts of these stressors because of its commercial importance and clear phenotypic 

relevance (calcification), but more work is needed on how upwelling conditions impact the settlement 

process. Lastly, there are several understudied calcifying organisms that are economically and 

ecologically important in which we have little to no baseline understanding of how climate stressors 

impact these organisms. We discuss the advantages and limitations of assessing vulnerability and 

adaptive potential of understudied organisms to OAH through estimating heritability of respiration, but 

other stresses such as thermal stress and salinity should also be considered.  
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APPENDIX A: Little evidence for genetic variation associated with susceptibility to sea star wasting 

syndrome in the keystone species Pisaster ochraceus 
 

Andrea R. Burton, Sarah Gravem, and Felipe Barreto 
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Figure S2.1. Population genetic clustering of Pisaster ochraceus across six sites in central Oregon. 

Vertical bars (y-axis) show the probability of membership of individuals (n = 133, x-axis) across 3 

or 6 potential clusters, as quantified by STRUCTURE. 
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Figure S2.2: Decay of linkage disequilibrium. Plotted are average r2 values for SNP-pair distances in 

bins of 100 bp increments. Red line is a lowess smooth line, calculated in R. 
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Figure S2.3. Results from Bayescan test of outliers for differentiation between wasting and 

apparently normal Pisaster ochraceus. No locus was detected as outlier. 
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Tables S2.1, S2.2, and S2.4 can be found from the published journal Molecular Ecology (https://doi.org/10.1111/mec.16212).  
 
 
Table S2.1. List and metadata for all sea stars (Pisaster ochraceus) from which tissue sample was collected from six sites: Boiler Bay (BB), Fogarty Creek (FC), 
Smelt Sands (SS), Strawberry Hill (SH), and Tokatee Klootchman (TK). Link to document 
(https://onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1111%2Fmec.16212&file=mec16212-sup-0002-TableS1.xlsx).  
 

Table S2.2. Summary of final SNP loci identified post filtering and used for analyses of genetic variation. Link to document 
(https://onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1111%2Fmec.16212&file=mec16212-sup-0003-TableS2.xlsx).  
 
Table S2.4. BLASTP annotations of protein-coding genes located within 30 kb from the DAPC outlier SNPs. Shown are best-hit results from BLASTP searches 
against the Uniprot/Swissprot and against NCBI's 'nr' databases.  Details about the SNPs are found on Table S3, and about loci are found on Table S2. Link to 
document (https://onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1111%2Fmec.16212&file=mec16212-sup-0005-TableS4.xlsx). 
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Table S2.3. SNP loci most discriminant between apparently normal and wasting sea stars in a Discriminant Analysis of Principal Components. Fst estimated with 
GPAT (Shapiro et al., 2013) and allele frequencies and heterozygosities estimated with Stacks (Catchen, Hohenlohe, Bassham, Amores, & Cresko, 2013). Locus 
ID were assigned in our study (full list found on Table S2.1). 
 

Locus ID Chr. Scaffold Position 
Loading 

from DAPC 
Fst (WC) P-value (Fst) 

Allele Freq 

(wasting) 

Allele Freq 

(apparently 

normal) 

Allele frequency 

difference 

Number 

genotyped 

(wasting) 

Number 

genotyped 

(apparently 

normal) 

Heterozygosity 

(Symptomatic) 

Heterozygosity 

(Asymptomatic) 

10976 2 Sc28pcJ_502_HRSCAF_549 13304634 0.00022529 -0.012 4.634E-01 0.500 0.589 0.089 26 45 0.15 0.07 

11591 2 Sc28pcJ_502_HRSCAF_549 16781924 0.00025183 -0.001 2.981E-01 0.650 0.579 0.071 50 63 0.42 0.30 

47575 3 Sc28pcJ_1465_HRSCAF_1564 7659909 0.00020306 -0.009 9.460E-01 0.656 0.636 0.020 48 66 0.35 0.48 

49004 3 Sc28pcJ_1465_HRSCAF_1564 14922132 0.00030496 -0.012 8.318E-01 0.692 0.678 0.014 52 59 0.27 0.31 

49005 3 Sc28pcJ_1465_HRSCAF_1564 14922143 0.00023993 -0.007 6.361E-01 0.759 0.722 0.037 54 63 0.33 0.27 

49366 3 Sc28pcJ_1465_HRSCAF_1564 17135794 0.00020361 0.040 1.239E-02 0.628 0.466 0.162 47 59 0.32 0.42 

61467 7 Sc28pcJ_1840_HRSCAF_2023 6392287 0.00020981 0.071 1.862E-02 0.681 0.464 0.217 47 58 0.21 0.40 

14207 8 Sc28pcJ_520_HRSCAF_571 5198014 0.00020396 0.007 1.599E-01 0.653 0.755 0.102 36 47 0.19 0.23 

16394 8 Sc28pcJ_520_HRSCAF_571 17327004 0.00024693 -0.009 3.595E-01 0.650 0.600 0.050 43 49 0.23 0.36 

16489 8 Sc28pcJ_520_HRSCAF_571 17814546 0.00022315 0.063 9.760E-04 0.670 0.477 0.193 47 64 0.40 0.36 

41194 10 Sc28pcJ_1131_HRSCAF_1221 14619986 0.00025868 0.031 2.905E-02 0.467 0.620 0.153 46 50 0.28 0.28 

30607 11 Sc28pcJ_709_HRSCAF_769 7983511 0.00025151 0.114 5.005E-04 0.594 0.825 0.231 53 63 0.28 0.25 

31883 11 Sc28pcJ_709_HRSCAF_769 15433527 0.00021459 0.053 2.726E-03 0.727 0.868 0.141 55 68 0.36 0.26 

69275 12 Sc28pcJ_1844_HRSCAF_2043 386791 0.00020352 0.003 3.171E-01 0.577 0.656 0.079 52 61 0.54 0.33 

33938 13 Sc28pcJ_910_HRSCAF_986 7865639 0.00026851 0.109 1.250E-03 0.670 0.417 0.253 44 42 0.34 0.40 

36625 14 Sc28pcJ_1028_HRSCAF_1112 5984741 0.00022481 0.027 1.653E-02 0.563 0.695 0.132 48 59 0.38 0.47 

36723 14 Sc28pcJ_1028_HRSCAF_1112 6558194 0.00021546 0.004 4.959E-01 0.571 0.650 0.079 49 70 0.53 0.39 

58305 20 Sc28pcJ_1837_HRSCAF_1971 1865398 0.00024904 0.006 1.837E-01 0.636 0.716 0.080 55 67 0.40 0.45 
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Table S2.5. Outlier SNP ranges from DAPC analyses compared from Schiebelhut et al. (2018) to ours, with distances between SNP ranges indicated. 
 

Schiebelhut et al. 2018 This study Distance 
(bp) Locus ID Scaffold Chr. Range (bp) Locus ID Scaffold Chr. Range (bP) 

Loc0087_Hap1 Sc28pcJ_649_HRSCAF_705 1 30859536-30860334      
Loc0551_Hap1 Sc28pcJ_502_HRSCAF_549 2 2274042-2274428      
Loc1088_Hap2 Sc28pcJ_502_HRSCAF_549 2 17909795-17910557 11591 Sc28pcJ_502_HRSCAF_549 2 16781924-16796924 1112871 
Loc0138_Hap1 Sc28pcJ_502_HRSCAF_549 2 7266434-7267119      
Loc0855_Hap2 Sc28pcJ_502_HRSCAF_549 2 8152069-8152962      
Loc0852_Hap2 Sc28pcJ_502_HRSCAF_549 2 15241226-15241779 10976 Sc28pcJ_502_HRSCAF_549 2 13304634-13319634 1921592 
Loc0930_Hap1 Sc28pcJ_502_HRSCAF_549 2 21449465-21450138      
Loc0178_Hap1 Sc28pcJ_502_HRSCAF_549 2 20421495-20422276      
Loc0953_Hap2 Sc28pcJ_502_HRSCAF_549 2 22193213-22193738      
Loc0225_Hap4 Sc28pcJ_1465_HRSCAF_1564 3 19439045-19439467      
Loc1024_Hap2 Sc28pcJ_1465_HRSCAF_1564 3 12874215-12874773      
Loc0617_Hap1 Sc28pcJ_1465_HRSCAF_1564 3 14649056-14649495 49005 Sc28pcJ_1465_HRSCAF_1564 3 14922143-14937143 257648 

    49004 Sc28pcJ_1465_HRSCAF_1564 3 14922132-14937132 257637 
Loc0738_Hap1 Sc28pcJ_1465_HRSCAF_1564 3 15681560-15681919      
Loc0824_Hap1 Sc28pcJ_1465_HRSCAF_1564 3 3416235-3416997      
Loc0799_Hap2 Sc28pcJ_1465_HRSCAF_1564 3 16235057-16235896 49366 Sc28pcJ_1465_HRSCAF_1564 3 17135794-17150794 884898 
Loc1120_Hap1 Sc28pcJ_1465_HRSCAF_1564 3 6077067-6078049 47575 Sc28pcJ_1465_HRSCAF_1564 3 7659909-7674909 1566860 
Loc0687_Hap2 Sc28pcJ_1465_HRSCAF_1564 3 15271297-15271607      
Loc0161_Hap3 Sc28pcJ_1840_HRSCAF_2023 7 9459415-9459701      
Loc0328_Hap2 Sc28pcJ_1840_HRSCAF_2023 7 1636014-1636808      
Loc0527_Hap4 Sc28pcJ_1840_HRSCAF_2023 7 9282396-9282955 61467 Sc28pcJ_1840_HRSCAF_2023 7 6392287-6407287 2875109 
Loc0756_Hap3 Sc28pcJ_1840_HRSCAF_2023 7 12003949-12004675      
Loc0896_Hap2 Sc28pcJ_1840_HRSCAF_2023 7 14636614-14637170      
Loc0242_Hap1 Sc28pcJ_1840_HRSCAF_2023 7 19387027-19387901      
Loc0229_Hap2 Sc28pcJ_520_HRSCAF_571 8 523821-526539      
Loc0247_Hap2 Sc28pcJ_520_HRSCAF_571 8 18171569-18172799 16394 Sc28pcJ_520_HRSCAF_571 8 17327004-17342004 829565 

    16489 Sc28pcJ_520_HRSCAF_571 8 17814546-17829546 342023 
Loc0599_Hap3 Sc28pcJ_520_HRSCAF_571 8 10014159-10015204      
Loc0728_Hap1 Sc28pcJ_520_HRSCAF_571 8 1390556-1392626      
Loc0376_Hap2 Sc28pcJ_520_HRSCAF_571 8 5667809-5668767 14207 Sc28pcJ_520_HRSCAF_571 8 5198014-5213014 454795 
Loc0918_Hap1 Sc28pcJ_520_HRSCAF_571 8 6020359-6020661      
Loc0135_Hap2 Sc28pcJ_520_HRSCAF_571 8 9075042-9076180      
Loc0685_Hap1 Sc28pcJ_520_HRSCAF_571 8 3700086-3700691      
Loc0970_Hap1 Sc28pcJ_520_HRSCAF_571 8 16395428-16396978      
Loc0571_Hap2 Sc28pcJ_1131_HRSCAF_1221 10 14374094-14374779 41194 Sc28pcJ_1131_HRSCAF_1221 10 14619986-14634986 260892 
Loc0252_Hap2 Sc28pcJ_1131_HRSCAF_1221 10 1803663-1804414      
Loc0684_Hap2 Sc28pcJ_1131_HRSCAF_1221 10 1791911-1792400      
Loc0076_Hap1 Sc28pcJ_709_HRSCAF_769 11 16123808-16124232      
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Loc0946_Hap1 Sc28pcJ_709_HRSCAF_769 11 17268706-17269706      
Loc0152_Hap4 Sc28pcJ_709_HRSCAF_769 11 3548866-3549775      
Loc1141_Hap1 Sc28pcJ_709_HRSCAF_769 11 16123655-16123807 31883 Sc28pcJ_709_HRSCAF_769 11 15433527-15448527 675128 
Loc0818_Hap1 Sc28pcJ_709_HRSCAF_769 11 14339691-14340334      
Loc0494_Hap1 Sc28pcJ_709_HRSCAF_769 11 6506815-6507339 30607 Sc28pcJ_709_HRSCAF_769 11 7983511-7998511 1461172 
Loc0465_Hap1 Sc28pcJ_709_HRSCAF_769 11 18238420-18239608      
Loc0634_Hap2 Sc28pcJ_709_HRSCAF_769 11 3685508-3686206      
Loc1048_Hap1 Sc28pcJ_1844_HRSCAF_2043 12 11524370-11525227      
Loc0988_Hap1 Sc28pcJ_1844_HRSCAF_2043 12 5724624-5725470 69275 Sc28pcJ_1844_HRSCAF_2043 12 386791-401791 5322833 
Loc1135_Hap2 Sc28pcJ_1844_HRSCAF_2043 12 6839003-6840062      
Loc0443_Hap3 Sc28pcJ_1844_HRSCAF_2043 12 15522604-15523748      
Loc0802_Hap3 Sc28pcJ_910_HRSCAF_986 13 7559246-7559972 33938 Sc28pcJ_910_HRSCAF_986 13 7865639-7880639 290667 
Loc0327_Hap3 Sc28pcJ_910_HRSCAF_986 13 14030061-14030991      
Loc0341_Hap2 Sc28pcJ_910_HRSCAF_986 13 5231561-5232383      
Loc1139_Hap1 Sc28pcJ_910_HRSCAF_986 13 3026981-3028522      
Loc0719_Hap1 Sc28pcJ_910_HRSCAF_986 13 16230004-16230976      
Loc1144_Hap3 Sc28pcJ_1028_HRSCAF_1112 14 369649-370818 36625 Sc28pcJ_1028_HRSCAF_1112 14 5984741-5999741 5598923 

    36723 Sc28pcJ_1028_HRSCAF_1112 14 6558194-6573194 6172376 
Loc1202_Hap1 Sc28pcJ_1837_HRSCAF_1971 20 12209158-12210675      
Loc0141_Hap2 Sc28pcJ_1837_HRSCAF_1971 20 1171135-1171569 58305 Sc28pcJ_1837_HRSCAF_1971 20 1865398-1880398 693829 
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APPENDIX B: Ocean acidification influence on gene expression patterns during settlement in 

Crassostrea gigas 
 

Andrea R. Burton, Evan Durland, and Chris Langdon 
 
 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

95 

Table S3.1: Water quality measurements with mean (±"#) temperature, salinity, total alkalinity (%eq kg-2), total CO2 (TCO2), partial pressure CO2 (pCO2), 
bicarbonate (µmol kg-1), carbonate (µmol kg-1), pH (with pHT = pH on the total scale), saturated calcite (Ωcalc), and aragonite (Ωrag) for ambient and high pCO2 
treatments for filtered seawater after 48 hours of culturing (before sea water change).  
 

pCO2 Treatment Temp (°C) Salinity Alkalinity (!eq kg-1) TCO2 (!mol kg-2) pCO2 (!atm) HCO3
- (!mole kg-1) CO3

2- (!mol kg-1) pHT Ωarag Ωcalc 

Ambient 
24.8 30.8 2262 2112 817 1968 120.5 7.8 1.95 2.93 

(±	0.7) (±	0.03) (±	59) (± 59) (± 289.6) (± 105) (± 26.3) (± 0.12) (± 0.42) (± 0.64) 

High 
24.6 30.8 2340 2302 2126 2168 71.3 7.46 1.16 1.74 

(± 0.9) (± 0.4) (± 115) (± 72) (± 969.2) (± 67) (± 56.8) (± 0.26) (± 0.93) (± 1.4) 
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Table S3.2: Summary of number of up- and down-regulated genes with their associated GO terms from 

enriched genes from high pCO2 and ambient for settled spat and non-attached individual cultures 

model.  

 

Model Term GO term # Up-regulated # Down-regulated 

Att.Spat Eukaryotic translation initiation factor GO:0005852 4 6 

Att.Spat Actin cytoskeleton GO:0015629 3 8 

Non.Att Actin binding GO:0003779 43 17 

Non.Att RNA-directed DNA polymerase activity GO:0003964 20 31 

Non.Att Guanyl-nucleotide exchange factor activity GO:0005085 18 29 

Non.Att Cytoplasm GO:0005735 184 166 

Non.Att Microtubule-based movement GO:0007018 37 12 

Non.Att ATP-dependent microtubule motor activity GO:0008569 10 13 

Non.Att Exodeoxyribonucease III activity GO:0008853 47 32 

Non.Att Myosin complex GO:0016459 17 18 
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APPENDIX C: Methods to assess vulnerability and adaptive potential of understudied organisms to 

ocean acidification and hypoxia: Estimating heritability of variation in respiration rates in Haliotis 
rufescens 

 
Andrea R. Burton, Hannah Gossner, Francis Chan 
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Figure S4.1: Principal component analyses of allele frequencies of each individual.  
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Table S4.1: Subset of first 100 relatedness estimate pairs for Wang (W) and Lynch & Li (LL) before 

and after correcting data set by removing individuals with confidence intervals greater than 5 in 

relatedness estimates and MAF < 0.5.  

 

Pair Number Animal 1 Animal 2 
Before Corrections After Corrections 

W LL W LL 
1 HR1 HR2 0.0835 0.0293 0.8157 0.7991 
2 HR1 HR3 -0.1509 -0.0606 0.7652 0.7359 
3 HR1 HR4 -0.1436 -0.0576 0.6709 0.6789 
4 HR1 HR5 0.0557 0.0189 0.7374 0.7509 
5 HR1 HR6 0.0976 0.0215 0.5508 0.5291 
6 HR1 HR7 0.2324 0.1432 0.3229 0.2837 
7 HR1 HR8 -0.2225 -0.0979 1 1 
8 HR1 HR9 0.2573 0.1059 0.0214 -0.0713 
9 HR1 HR10 0.1843 0.0594 0.7331 0.7281 

10 HR1 HR11 0.0707 0.0275 0.5898 0.5603 
11 HR1 HR12 -0.1755 -0.0726 0.196 0.1529 
12 HR1 HR13 -0.033 -0.0144 0.479 0.4912 
13 HR1 HR14 0.0394 0.0171 0.3739 0.389 
14 HR1 HR15 -0.1752 -0.0498 0.4959 0.4659 
15 HR1 HR16 -0.2705 -0.0979 0.8077 0.8027 
16 HR1 HR17 0.0837 0.0292 0.6295 0.5977 
17 HR1 HR18 -0.1283 -0.0667 0.8775 0.8834 
18 HR1 HR19 0.2192 0.081 0.3201 0.3104 
19 HR1 HR20 -0.1532 -0.0559 0.5253 0.5105 
20 HR1 HR21 -0.0524 -0.0198 0.1416 0.1323 
21 HR1 HR22 -0.2333 -0.112 0.4454 0.4288 
22 HR1 HR23 1 0.0708 0.6408 0.6212 
23 HR1 HR24 0.2129 0.0678 0.4299 0.4469 
24 HR1 HR25 -0.3526 -0.1712 0.6786 0.6686 
25 HR1 HR26 -0.5589 -0.1699 0.2554 0.2738 
26 HR1 HR27 0.304 0.1301 0.3863 0.3662 
27 HR1 HR28 -0.1478 -0.0885 0.6224 0.5888 
28 HR1 HR29 0.1736 0.0687 0.6276 0.6294 
29 HR1 HR30 -0.0385 -0.0145 0.1665 0.0619 
30 HR1 HR31 -0.0414 -0.0214 0.3098 0.3131 
31 HR1 HR32 -0.2597 -0.1841 0.4479 0.4331 
32 HR1 HR33 0.0839 0.0232 0.0554 0.0162 
33 HR1 HR34 -0.1747 -0.0928 0.2761 0.2253 
34 HR1 HR35 -0.097 -0.0404 0.0189 0.0423 
35 HR1 HR36 0.0824 0.0271 0.4964 0.4903 
36 HR1 HR37 -0.1245 -0.0616 0.5875 0.578 
37 HR1 HR38 -0.2337 -0.1016 0.3302 0.3249 
38 HR1 HR39 -0.2072 -0.086 0.414 0.4059 
39 HR1 HR40 0.0977 0.0516 0.321 0.244 
40 HR1 HR41 -0.0011 -5.00E-04 0.5486 0.5207 
41 HR1 HR42 -0.3013 -0.1669 0.338 0.3433 
42 HR1 HR43 -0.1542 -0.0696 0.6291 0.5903 
43 HR1 HR44 -0.0308 -0.0098 0.6335 0.6187 
44 HR1 HR45 -0.0402 -0.0199 0.4777 0.4742 
45 HR1 HR46 -0.3013 -0.1364 0.2864 0.2437 
46 HR1 HR47 -0.1331 -0.063 0.3645 0.2957 
47 HR1 HR48 -0.2532 -0.1295 0.7537 0.7457 
48 HR1 HR49 -0.2455 -0.1259 0.7381 0.7368 
49 HR1 HR50 -0.2112 -0.0964 0.4898 0.4783 
50 HR1 HR51 0.2408 0.0747 0.5783 0.5674 
51 HR1 HR52 0.4043 0.1102 0.7909 0.756 
52 HR1 HR53 -0.1951 -0.0745 0.1863 0.1309 
53 HR1 HR54 0.1113 0.0513 0.8545 0.861 
54 HR1 HR55 1 0.0747 0.1405 0.1436 
55 HR1 HR56 -0.1983 -0.1053 0.4112 0.3997 
56 HR1 HR57 0.2135 0.0604 0.8362 0.824 



 

 

100 

57 HR1 HR58 -0.1446 -0.0367 1 1 
58 HR1 HR59 0.343 0.1682 0.7736 0.7424 
59 HR1 HR60 0.0606 0.0098 0.5118 0.4865 
60 HR1 HR61 0.0154 0.0083 0.4335 0.4276 
61 HR1 HR62 0.3508 0.1062 0.708 0.721 
62 HR1 HR63 0.3207 0.0749 0.5133 0.5336 
63 HR1 HR64 0.0605 0.027 1 1 
64 HR1 HR65 -0.0573 -0.022 0.1543 0.095 
65 HR1 HR66 0.0781 0.029 0.4415 0.408 
66 HR1 HR67 0.1356 0.0802 0.601 0.5841 
67 HR1 HR68 0.4456 0.1596 0.4653 0.4539 
68 HR1 HR69 0.108 0.0548 0.652 0.6542 
69 HR1 HR70 0.2244 0.094 0.1001 0.1308 
70 HR1 HR71 0.0917 0.0463 0.496 0.4723 
71 HR1 HR72 0.4891 0.1566 0.5327 0.5176 
72 HR1 HR73 -0.0694 -0.0363 0.6495 0.6587 
73 HR1 HR74 0.1831 0.0747 0.4317 0.4136 
74 HR1 HR75 -0.3363 -0.1452 0.6179 0.6194 
75 HR1 HR76 -0.0497 -0.0233 0.767 0.7889 
76 HR1 HR77 -0.018 -0.0085 -0.0314 -0.0664 
77 HR1 HR78 -0.3018 -0.1496 0.1807 0.1309 
78 HR1 HR79 -0.0694 -0.0386 0.3754 0.3795 
79 HR1 HR80 0.4962 0.1803 0.2433 0.2466 
80 HR1 HR81 -0.1809 -0.0842 0.3143 0.3051 
81 HR1 HR82 0.3412 0.1251 0.679 0.6788 
82 HR1 HR83 -0.3228 -0.1065 0.7327 0.7099 
83 HR1 HR84 -0.053 -0.0218 0.7645 0.7634 
84 HR1 HR85 -0.1255 -0.0756 0.2928 0.2852 
85 HR1 HR86 0.4714 0.1033 0.0202 -0.0244 
86 HR1 HR87 -0.288 -0.0672 -0.0075 -0.0606 
87 HR1 HR88 0.5107 0.1711 0.7394 0.7376 
88 HR1 HR89 0.0343 0.0116 0.7078 0.7123 
90 HR2 HR3 -0.223 -0.0862 0.8901 0.8822 
91 HR2 HR4 -0.0498 -0.0289 0.4446 0.4282 
92 HR2 HR5 0.0814 0.0298 0.4135 0.3802 
93 HR2 HR6 0.1016 0.0269 0.4478 0.4303 
94 HR2 HR7 -0.1027 -0.0357 0.1131 0.0397 
95 HR2 HR8 0.1659 0.0556 -0.2814 -0.4192 
96 HR2 HR9 0.1032 0.0534 0.1026 0.0185 
97 HR2 HR10 0.2013 0.1122 0.7258 0.7201 
98 HR2 HR11 -0.1138 -0.0359 0.1261 0.1007 
99 HR2 HR12 -0.5495 -0.1906 0.2826 0.2576 

100 HR2 HR13 0.252 0.0844 0.1498 0.1359 
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Table S4.2: 95% Confidence intervals from each paired estimate of relatedness for Wang (W) and 

Lynch & Li (LL) with ranges of confidence intervals greater than 5 calculated by subtracting the lower 

from the upper limits. Individuals seen in bold were seen in more than one pair of relatedness estimates 

with confidence intervals greater than 5.  

 

Pair Ind 1 Ind 2 W: CI  LL: CI  

1414 511 532 6.0522 5.9209 

1443 583 496 28.7522 28.7522 

1753 476 499 6.3299 6.2898 

2171 561 519 7.0096 6.9934 

2172 561 523 21.4025 21.3439 

2173 562 577 13.5472 13.4515 

2176 596 524 6.2684 6.2537 

2204 593 526 8.8306 8.8003 

2235 590 535 6.147 6.1072 

2734 508 510 5.2157 5.216 

3428 553 532 10.5017 10.6482 

3859 599 519 12.8512 12.8213 

4331 557 576 5.1831 5.1509 

4436 577 478 6.1092 6.0904 

4442 568 477 5.3033 5.2616 

4553 561 517 6.6347 6.6096 

4658 593 519 9.4645 9.4341 

4798 561 518 6.6873 6.663 

5753 562 487 10.7043 10.6851 

5782 506 538 6.7055 6.7231 

5868 553 496 5.8578 5.8281 
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Table S4.3: Heritability estimates from Lynch & Li (LL) and Wang (W) after binning MAF every 

10%. NAs indicate when estimators that were not able to estimate h2 due to non-positive definite 

relatedness matrices. 

 

 LL WW 

MAF Bin 10% 20% 30% 40% 50% 10% 20% 30% 40% 50% 

N loci 172 60 36 34 33 172 60 36 34 33 

           

Model           

Pre.Exp NA NA NA NA NA NA NA NA NA NA 

Base.Exp NA NA NA NA NA NA NA NA NA NA 

Cont.Exp NA NA NA NA 
-0.184 

±	0.451 
NA NA NA NA NA 

Fut.Exp NA NA NA NA NA NA NA NA NA NA 

Pre.Rec NA NA NA NA NA NA NA NA NA NA 

Base.Rec NA NA NA NA 
0.120 

±0.262 
NA NA NA NA NA 

Cont.Rec NA NA NA NA NA NA NA NA NA NA 

Fut.Rec NA NA NA NA NA NA NA NA NA NA 

 

 


